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Executive Summary

Blockchain technology enables participants to read from and update to a common shared ledger (or blockchain) 
whose state is collectively maintained by the network in a decentralized fashion. The blockchain is updated via the 
consensus protocol that ensures a common, unambiguous ordering of transactions and blocks and guarantees the 
integrity and consistency of the blockchain across geographically distributed nodes. The Bitcoin cryptocurrency, 
which first popularized the concept of blockchain, also introduced Proof-of-Work (PoW) based consensus, which 
scaled to thousands of completely untrusted participants (nodes). PoW based consensus requires nodes to 
solve a hard cryptographic puzzle by brute-forcing and produce a winning value before being able to add a block 
to the blockchain. It however has a few drawbacks such as high latencies, low transaction rate and significant 
energy expenditure, which makes it a less than perfect fit for many applications. As blockchain independently 
emerged as a powerful technology, decoupled from the cryptocurrency, its consensus mechanisms also evolved 
independently dictated by the blockchain platform and application requirements. Since the consensus model 
maintains the sanctity of data recorded on the blockchain, it is important to ensure that it functions correctly in 
normal as well as adversarial conditions. This whitepaper provides an overview of consensus models as adopted 
by popular blockchain platforms and analyzes their merits and demerits.  

Introduction

A blockchain-based system is a classical distributed system with shared state (i.e. the blockchain) where all 
participants are geographically distributed and connected via different kinds of networks. Blockchain platforms 
can be classified into two main types – permissionless and permissioned. Open-ended systems such as Bitcoin 
and Ethereum are permissionless. They are publicly available for use. Any node can conduct transactions as well 
as take part in the consensus process to advance the blockchain. Permissioned platforms such as Hyperledger 
Fabric and Multichain are aimed at consortiums where participation is close-ended. While clients are allowed 
to submit transactions, advancing the blockchain is restricted to a fixed set of peering nodes  that are run by 
consortium members.

In a permissionless setup, the number of nodes is expected to be large, and these nodes are anonymous and 
untrusted since any node is allowed to join the network. Consensus mechanisms for such a setup have to 
account for maliciousness; particularly Sybil attacks. Sybil attacks on a blockchain network can allow a single 
user to generate several online identities to influence and manipulate the consensus process. Bitcoin solves 
this problem by designing the consensus round to be computationally hard. Nodes have to prove that they 
have expended significant amount of energy as Proof-of-Work (PoW) towards solving a hard cryptographic 
puzzle. This approach, though wasteful in terms of energy expense, is required to ensure the safety of the 
consensus process. Early blockchain platforms that were designed to be permissionless directly adopted PoW 
consensus mechanisms from Bitcoin or designed some variant of it, for example, NameCoin, LiteCoin, DogeCoin 
and Monero.

Permissioned platforms have semi-trusted members where only known participating nodes that are part of a 
consortium, are verified and registered.  These groups are expected to be small in number and therefore can 
employ alternative consensus mechanisms. Achieving consensus in a distributed system has known solutions 
in the research literature, e.g. Paxos, RAFT, and various Byzantine Fault Tolerance algorithms. Permissioned 
blockchain platforms have largely adopted these consensus algorithms. 

As blockchain platforms are being challenged to meet rigorous real-world application requirements, such as low 
latencies, immediate transaction finality, high performance and good  scalability, limitations of existing consensus 
models are being recognized. On one hand, while PoW models support open-ended participation, they are a 
poor match for applications that need immediate transaction finality and have high transaction rates. They also 
waste a lot of power. One study found that the electricity wasted in Bitcoin mining is comparable to the average 
electricity consumption of Ireland [1]. On the other hand, consensus models designed for closed systems do not 
scale well beyond about twenty peering nodes and cannot have any open-ended participation. To address these 
limitations, new consensus models have been designed and newer ones are still emerging. 
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“A blockchain based system is as secure and robust as its 
consensus model. ”

The security of the consensus model is perhaps the most crucial aspect that requires close attention when 
choosing a blockchain platform. The consensus mechanism maintains the sanctity of the data recorded on the 
blockchain. The blockchain system will safeguard the transaction and block order thereby safeguarding all the 
key properties of blockchain, such as immutability and auditability only when the underlying assumptions are 
correct and the consensus model can uphold the state of the blockchain under failure and adversarial conditions. 

Poor choice of a consensus mechanism can render the blockchain platform useless thereby compromising the 
data recorded on the blockchain. Below are some of the issues that can result when the consensus mechanism 
fails.

Blockchain Fork – A blockchain fork can result in different nodes in the system converging on different blocks 
as being part of the blockchain. In Bitcoin, though temporary forks may exist due to network latencies, the 
protocol is designed such that all nodes will eventually converge on a single chain. A blockchain fork can wreak 
havoc on applications leading to completely inconsistent view of data recorded on the blockchain thereby forcing 
applications to behave in an unpredictable manner. The Stellar network, which originally forked code from Ripple, 
experienced a fork in the Stellar blockchain due to a misconfiguration [2]. 

Consensus Failure – Certain consensus algorithms may not guarantee the ability to reach consensus. For e.g. 
if the consensus algorithm requires a super-majority vote from a certain percentage of nodes, failing to reach 
this number because of node or network failures, non-compliant nodes or as a result of valid honest nodes not 
being able to make a decision due to inconsistent messages received from other nodes, may result in consensus 
failure. 

Dominance – Consensus round outcomes can be manipulated by a single or group of entities if it is not designed 
to be resilient against Sybil attacks, where one or handful of nodes can generate millions of identities that they 
control. Having such dominance allows the dominating group to confirm the transactions and blocks as per their 
rules, even include transactions that can double-spend the cryptocurrency. Dominance can also be achieved by 
other means, such as controlling 51% of mining power in a PoW network [3].

Cheating – Validating nodes either individually or in collusion can independently maintain parallel forks in the 
blockchain of fraudulent transactions or altered reality that can been provided as proof to the auditor or external 
third party. The consensus and blockchain reading mechanism has to ensure that such attacks cannot be carried 
out on the blockchain platform.

Poor Performance – Based on the design of the consensus algorithm, it may require more time under certain 
conditions for consensus to converge. These conditions could be dynamic where other nodes have turned 
malicious or a network partition may delay messages that are exchanged between nodes, etc. This may manifest 
as inconsistently high latencies in applications.

4
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Consensus Background

Consensus mechanisms allow secure updating of a distributed shared state and have been a topic of active 
research in the past three decades. Common technique used for achieving fault tolerance in a distributed system 
is to distribute the shared state across multiple replicas in the network. Updating the replicated shared state 
happens according to pre-defined state transition rules defined by the state machine that is executed on all the 
replicas. This technique is known as state machine replication. Replication of state ensures that the state is not 
lost if one or more nodes crash. The state machine rules ensure that all nodes executing them with identical 
inputs, will eventually produce the same outputs. This results in eventual agreement on the change of state via 
the consensus protocol. The replicas also communicate with each other to build consensus and agree upon the 
finality of the state after a state change is executed. With a blockchain based system, the shared state is the 
blockchain and the state transition rules are the rules of the blockchain protocol. 

Achieving consensus in a distributed system is challenging. Consensus algorithms have to be resilient to failures 
of nodes, partitioning of the network, message delays, messages reaching out-of-order and corrupted messages. 
They also have to deal with selfish and deliberately malicious nodes. Several algorithms are proposed in the 
research literature to solve this, with each algorithm making the required set of assumptions in terms of synchrony, 
message broadcasts, failures, malicious nodes, performance and security of the messages exchanged. For a 
blockchain network, achieving consensus ensures that all nodes in the network agree upon a consistent global 
state of the blockchain.

A consensus protocol has three key properties based upon which its applicability and efficacy can be determined.

i. Safety – A consensus protocol is determined to be safe if all nodes produce the same output and the
outputs produced by the nodes are valid according to the rules of the protocol. This is also referred to as
consistency of the shared state.

ii. Liveness - A consensus protocol guarantees liveness if all non-faulty nodes participating in consensus
eventually produce a value.

iii. Fault Tolerance – A consensus protocol provides fault tolerance if it can recover from failure of a node
participating in consensus.

While all the above three properties are crucial, a famous result 
by Fischer, Lynch and Paterson [4] known as the FLP Impossibility 
Result, states that no deterministic consensus protocol can guarantee 
safety, liveness and fault tolerance in an asynchronous system. While 
fault tolerance is crucial for globally distributed networks to operate, 
distributed systems tend to choose between safety and liveness 
depending on their system requirements and assumptions.

Fault tolerance refers to two types of faults in distributed systems. 
Fail-stop faults deal with node failures that cause nodes to stop 
participating in the consensus protocol. These are benign faults 
caused by hardware or software crashes. When a fail-stop fault 
occurs, the node just stops responding. The second category of faults 
are Byzantine faults, which cause nodes to behave erratically. This 
category of faults was identified and characterized by Leslie Lamport 
as the Byzantine General’s Problem [5], summarized in the side note. 
Byzantine faults or failures can occur because of software bugs or as 
a result of the node being compromised. A Byzantine node can lie,  
can provide ambivalent responses or completely mislead other nodes 
involved in the consensus protocol. The consensus protocol has to 
be able to operate correctly and reach consensus in the presence of

The Byzantine Generals Problem

A group of generals, each 
commandeering a part of the Byzantine 
army has surrounded an enemy city. 
To attack the city, all generals have to 
agree on a battle plan. Generals can 
communicate via messengers only. 
The messengers might be captured 
by the enemy and the message might 
never reach the other general. The 
difficulty in the agreement is that one 
or more generals might be traitors and 
are interested in sabotaging the battle 
plan. To this end, they might send false 
messages, distort messages or not send 
any messages at all.  All loyal generals 
will act according to the plan. A small 
number of traitors should not cause the 
loyal generals to adopt a bad plan.

5
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Byzantine nodes as long as the number of Byzantine nodes within a distributed system are limited.

Traditional consensus approaches in distributed systems have focused on building fault tolerance in the face 
of unreliable systems provisioning mainly for fail-stop faults. Paxos [6], Raft [7] and variants, view-stamped 
replication [8] can be used for ordering transactions in distributed databases or to order client generated requests 
and respective state change in distributed applications using replicated state machines. Paxos was built to 
achieve fault tolerance and consistency in the face of failing nodes, which might either permanently fail or fail for 
some time and then recover, or in the face of an unreliable network, where messages are not reliably delivered. 
In the face of such failures, these algorithms guarantee progress and consistency in the data structures that 
were replicated across physical machines. The number of nodes needed in such networks are “2f+1” to be able 
to tolerate “f” fail-stop failures. Tolerating Byzantine faults, increases the complexity of the consensus protocol 
by adding several extra layers of messaging into the system. Practical Byzantine Fault Tolerance (PBFT) [9], 
which was first proposed by Miguel Castro and Barbara Liskov, was the first practical approach that allowed 
for Byzantine fault tolerant applications with low-overhead. Tolerating Byzantine faults needs “3f+ 1” replicas 
to be able to tolerate “f” faults in the system. PBFT uses the concept of primary and secondary replicas, where 
the secondary replicas automatically check the sanity and liveness of decisions taken by the primary and can 
collectively switch to a new primary if the primary is found to be compromised.

Bitcoin’s Proof-of-Work Invention

The Bitcoin system facilitates transfer of the cryptocurrency (Bitcoins) from one individual to another in a 
completely decentralized fashion, and no central entity controls either the production of Bitcoins or is involved in 
their transfer. The Bitcoin blockchain is replicated on multiple nodes and the nodes order the transactions based 
on a Proof-of-Work (PoW) consensus mechanism. 

To add blocks to the blockchain, each node has to show that it has performed some amount of work, also 
known as Proof-of-Work (PoW). In Bitcoin, the node has to find a hash value that is less than a certain number, 
also referred to as the difficulty level set by the network. The difficulty level is dynamically tuned by the Bitcoin 
protocol, which currently ensures that one block is produced every ten minutes. The process of solving the PoW 
puzzle to find a winning hash value is known as mining. The first node to find a winning hash  gets to add its 
proposed block to the blockchain and also claim the mining reward. Due to the distributed, concurrent nature of 
this process, sometimes more than one node is able to find a winning hash at the same time. Each winning node 
adds its own proposed block to the blockchain and broadcasts this over the peer-to-peer network. In such cases, 
there is a temporary fork in the blockchain, where some nodes are adding blocks to one branch, while other 
nodes are adding blocks to other branches, based on which winning node is closest to them. However, as more 
blocks are added to these forks, the protocol will ensure that the branch with the maximum PoW (i.e. the longest 
branch) will get included in the blockchain and others will be discarded. This leads to an eventual consistency 
among all nodes regarding the state of the blockchain. 

The Bitcoin PoW consensus algorithm works well in an open environment where any number of nodes can 
participate in the network and start mining. No knowledge or authentication is needed of any participants, thereby 
making this kind of consensus model extremely scalable in terms of supporting thousands of nodes. The Bitcoin 
PoW consensus is however vulnerable to “51%” attacks, where a mining pool that is able to control 51% of the 
mining power (i.e. hashrate), can write its own blocks into the blockchain or fork it to create an independent 
branch that converges at a later point with the main blockchain. The advantage for the attacker in launching such 
an attack, is that he can double spend his own funds and selectively reject transactions that he does not want 
included on the blockchain.

Another research [10] proves that a new type of attack can be carried out with an approach known as selfish 
mining, where the normally honest miners are incentivized to support the attacker and join in carrying out a 51% 
attack. In this attack, the attacker performs erratic mining, at the cost of his short term revenue by maintaining 
a separate private blockchain in parallel to the Bitcoin blockchain. He selectively publishes many blocks all at 
once, forcing rest of the network to discard their blocks and ultimately losing revenue.  This incentivizes honest 
miners to join the attackers’ coalition to increase their revenue, which eventually can get to the size of 51% of the 

6
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network’s mining power, enabling the attacker to carry out a 51% attack.

Bitcoin uses the PoW model, which guarantees eventual consistency in the Bitcoin blockchain despite temporary 
forks. This approach results in longer transaction confirmation times, to ensure reasonable consensus finality, 
resulting in slower transaction confirmation rate, which at the time of writing is approximately 7 transactions/
second. This is considered very slow in the world of payments, particularly when contrasted with MasterCard or 
VISA’s 10,000 transactions/sec. Bitcoin-PoW also wastes a lot of energy in computation of hashes during the 
mining process. It however has excellent scalability in terms of nodes participating in the network and operates 
completely in a decentralized fashion.

Blockchain Consensus Models

Blockchain platforms use a range of consensus models which are PoW and PBFT in their original form or variations 
of it providing certain advantages desired over the original model. Bold new models are also proposed, such as 
Proof-of-Stake (PoS) and Proof-of-elapsed-Time (PoeT) and variations of PBFT appear as viable alternatives. 
In this section, we review the broad categories of consensus models used by the popular blockchain platforms.

Proof of Work – Ethereum (Homestead)
Ethereum is a general purpose blockchain platform that supports smart contracts, a Turing complete programming 
language, Solidity, for writing smart contracts and a virtual machine called Ethereum Virtual Machine (EVM) for 
executing smart contract code on Ethereum nodes. Like Bitcoin, Ethereum network is open and permissionless; 
any user can download the Ethereum client to create an account and join the Ethereum network. It uses an 
internal cryptocurrency called Ether, which is used to pay for the network resources as well serve as an anti-
spamming/DDoS defense measure. Ethereum is designed to be general purpose and can be used by any kind 
of application requiring blockchain support. All transactions are recorded on the Ethereum blockchain and can be 
verified by any entity using the Ethereum network.

Ethereum (in the current version called Homestead) uses its own PoW consensus model, called EthHash that 
provides fast confirmation times and builds ASIC resistance to counter 51% attacks that Bitcoin is susceptible to. 
Ethhash was designed to counter mining centralization. Mining centralization was a weakness in Bitcoin where 
a large number of ASICs were cheaply produced to perform hashing operations at very high rates, thereby 
outnumbering and outperforming the general purpose computer hardware by a very large margin. This allowed 
select powerful entities, such as large corporations to create mining pools, with a very high hashing rate and that 
allowed them to control a large portion of the computing power of the Bitcoin network. 

Ethhash uses two techniques for combating mining centralization. First technique uses a property called memory 
hardness.  Memory hardness refers to the ability of the computer to move data around in memory (rather than 
perform calculations), a property that general purpose computer hardware is already designed to perform 
significantly well but cannot be achieved efficiently on ASICs. By making the algorithm ASIC resistant, it prevents 
large powerful companies from seizing control of the mining power in the Ethereum network. A second technique 
referred to as GHOST, includes the headers of the recently orphaned blocks known as uncles. Orphaned blocks 
are blocks that were included on the temporary forks created off the main blockchain. The node producing the 
uncle block and the node including it in the blockchain are given a reduced reward to encourage them to continue 
with the latest block in the Ethereum blockchain.    

Ethhash also (similar to Bitcoin) uses the concept of finding a correct nonce input that can generate a hash value 
below a certain difficulty level. In all PoW algorithms, this is a time consuming process where the node simply 
needs to cycle through the nonce values and run the algorithm each time to generate a result.  The algorithm 
works by choosing subsets to a fixed resource dependent on the nonce and the block header. The fixed resource 
is a directed acyclic graph (DAG), which is few gigabytes in size, which each Ethereum client has to generate. 
The DAG changes and is totally different for each epoch in the Ethereum system. An epoch is identified as a 
time period taken to generate 30000 blocks. The DAG only depends on the block height and the clients can 
pre-generate and cache the DAG. If the pre-generation is not done, the client can experience massive delays at 

7
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every epoch transition as mining cannot begin without having a DAG for that epoch. DAG is needed for mining 
only and not for verification. Verification is a light weight process that can be computed in a fixed amount of time 
with low power CPU and small amount of memory. The Ethereum network adjusts the difficulty level to produce 
a block every 15 seconds. 

Ethereum shares the same concerns as Bitcoin regarding the 51% attack. If an attacker can control 51% of the 
mining power, a fork can be generated in the Ethereum blockchain. However, the ASIC resistant design builds 
in significant resistance towards carrying out a 51% attack in the Ethereum network. Ethereum is scheduled to 
move to a Proof-of-Stake algorithm in its future release (Serenity).

Proof-of-Stake Model (PoS) – Ethereum (Serenity)
Proof-of-Stake algorithms are designed to overcome the disadvantages of PoW algorithms in terms of the high 
electricity consumption involved in mining operations. PoS completely replaces the mining operation with an 
alternative approach involving a user’s stake or ownership of virtual currency in the blockchain system. Putting 
it another way, instead of a user spending say $2000 buying mining equipment to engage in PoW algorithm 
and winning a mining reward, with PoS she can buy $2000 worth of cryptocurrency and use it as stake to buy 
proportionate block creation chances in the blockchain system by becoming a validator. The PoS algorithm 
pseudo-randomly selects validators for block creation, thereby ensuring that no validator can predict its turn in 
advance. Naïve PoS algorithms suffer from a problem called Nothing-at-Stake.  These implementations do not 
provide incentives for nodes to vote on the correct block. Therefore nodes can vote on multiple blocks supporting 
multiple forks to maximize their chances of winning a reward as they do not “expend” anything in doing so as 
opposed to in PoW, where the node would be splitting up its resources to vote on multiple forks. This is the 
Nothing-at-Stake problem which needs to be tackled for a correct and efficient implementation of PoS.

Ethereum’s PoS algorithm, called Casper, is perhaps the most advanced PoS algorithm. Though multiple rounds 
of PoCs are released, it is still in testing and is expected to be released in the Serenity version of the Ethereum 
platform. Casper uses the concept of security deposits and bets to achieve consensus.  

Nodes are allowed to be bonded with the Ethereum system by making significant security deposits set by the 
protocol. These nodes are bonded validators and show commitment and interest in advancing the Ethereum 
blockchain via staking their security deposits. The initial list of bonded validators is tracked by a special contract 
known as the Casper contract. From there on, the bonded validator list can evolve based on newer nodes 
joining in and older ones leaving the system.  Each validator is pseudo-randomly selected to produce a block 
from the active validator set, with the probability of selection linearly weighted by each validator’s deposit.  If 
a validator is offline, a different validator is selected and this process repeats until an online validator is found 
that creates a block. If a validator produces a block that gets included in the chain, they receive a block reward 
equal to the total ether in the active validator set. If the validator produces a block that does not get included 
in the chain, the protocol works such that the validator loses the security deposit equal to the block reward. 
This mechanism proposes to solve the Nothing-at-Stake problem where it stop nodes from producing blocks 
that won’t get included in the main chain. Proof-of-Stake was first designed and a naïve version of it used by 
PeerCoin. Different variations of PoS are also used by BitShares, NXT and Tendermint.

Proof of Elapsed Time – Intel SawtoothLake
IntelLedger or Intel SawtoothLake is a blockchain platform developed by Intel and subsequently open sourced 
for use by the community. The project is officially now under Linux Foundation’s HyperLedger project as a 
proposal for further development.  IntelLedger uses a consensus algorithm, designed by Intel, called Proof  of 
Elapsed Time (PoET) intended to run in a Trusted Execution Environment (TEE), such as Intel’s Software Guard 
Extensions (SGX).  

PoET uses a random leader election model or a lottery based election model based on SGX, where the protocol 
randomly selects the next leader to finalize the block. The random leader election algorithm uses this model to 
deal with untrusted nodes and open–ended participation of nodes in the consensus algorithm. For the consensus 
to work correctly, it has to randomly distribute the leader election among all available participating nodes and it 
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needs a secure way for other nodes to verify that a given leader was correctly selected without any scope for 
manipulation. This is achieved using the TEE to guarantee the safety and randomness of electing a leader.

Leader election works as follows. All validating or mining nodes have to run the TEE using Intel SGX.  Each 
validator requests a wait time from the code running inside the TEE. The validator with the shortest wait time 
wins the lottery and can become the leader. The functions within the TEE are designed such that their execution 
cannot be tampered with by external software. 

When a validating node claims to be a leader and mines a block, it can also produce proof generated within the 
TEE that other nodes can easily verify.  It has to prove that it had the shortest wait time and it waited for a protocol 
designated amount of time before it is allowed to start mining the next block. 

The randomness in generating wait times ensures that the leader role is randomly distributed among all validating 
nodes. The only drawback of this algorithm is the reliance on specialized hardware.

Byzantine Fault Tolerance and variants – HyperLedger Fabric
Hyperledger Fabric, which is the most popular permissioned blockchain platform being developed by the Linux 
Foundation provides a flexible architecture with a pluggable consensus model. Fabric is designed for consortiums 
where the group of participants in the consortiums is not only known, but their identities are registered and verified 
with a central registry service running within the system. It also supports smart contracts on the blockchain, also 
known as chaincode. Hyperledger currently supports two consensus models – the popular Practical Byzantine 
Fault Tolerance algorithm (PBFT) and its variation SIEVE that is able to handle non-deterministic chaincode 
execution. Current proposals are considering Crash Fault Tolerance (XFT) [11], which is a variation of Paxos with 
Byzantine Fault Tolerance built-in, as an alternative consensus algorithm for future versions. 

PBFT

The Practical Byzantine Fault Tolerance algorithm proposed by Miguel Castro and Barbara Liskov was the first 
practical solution to the achieving consensus in the face of Byzantine failures. It uses the concept of replicated 
state machine and voting by replicas for state changes. It also provides several important optimizations, such as 
signing and encryption of messages exchanged between replicas and clients, reducing the size and number of 
messages exchanged, for the system to be practical in the face of Byzantine faults. This algorithm requires “3f+1” 
replicas to be able to tolerate “f” failing nodes. This approach imposes a low overhead on the performance of the 
replicated service. The authors report a 3% overhead for a replicated network file system (NFS) service that they 
conducted their experiments on.  PBFT however has only been scaled and studied to 20 replicas. It’s messaging 
overhead increases significantly as the number of replicas increase.

SIEVE

SIEVE consensus protocol is designed to handle non-determinism in chaincode execution. When non-determinism 
is present within the chaincode, it can produce different output when executed by different replicas in a distributed 
network.  SIEVE handles  transactions that are usually deterministic, but which may occasionally yield different 
outputs. The SIEVE protocol treats the chaincode itself like a bloack box. It initially executes all operations 
speculatively and then compares the outputs across replicas. If the protocol detects a minor divergence among a 
small number of replicas, the diverging values are sieved out. If the divergence occurs across several processes, 
then the offending operation itself is sieved out.

Cross-Fault Tolerance (XFT)

The XFT protocol is a new protocol that simplifies the attack model and make Byzantine Fault tolerance feasible 
and efficient for practical scenarios. BFT protocols assume a powerful adversary where the adversary is able to 
control the compromised nodes as well as the message delivery of the entire network. Being able to tackle such 
a powerful adversary brings in lot of complexity in BFT protocols and therefore makes them less efficient. XFT 
relaxes the assumption of the powerful adversary and solves the state machine replication problem by simplifying 
it and providing an efficient solution that can tolerate Byzantine faults. 

9
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XFT assumes that the adversary cannot control majority of the nodes and generate network partitions at will 
at the same time. XFT is particularly interesting to blockchain based systems. In such systems, nodes might 
have financial incentives to act maliciously, yet lack the means and capabilities to compromise communications 
between nodes or create arbitrary network partitions. In such geo-replicated systems, often there are multiple 
communication paths between peers and therefore communication is harder to break. 

XFT is designed to to provide correct service as long as majority of the replicas are correct and can communicate 
with each other synchronously.  It uses the same number of resources as protocols that can tolerate fail-stop 
failures and can yet tolerate Byzantine faults.

Federated Byzantine Agreement – Ripple & Stellar
Ripple and Stellar are two blockchain based platforms and payment protocols that use variations of the Byzantine 
Fault Tolerance consensus models by making them open-ended with respect to node participation. These 
blockchain platforms target financial use cases and the payments domain in particular. They provide payment 
protocols, which can settle cross-border transactions in a matter of seconds as opposed to today’s infrastructure 
that takes days for the same. 

The participants in such systems are end users, financial institutions that act as gateways and market makers 
that can be either users or financial institutions.  End users generate payment transactions using client software 
and must trust some gateways to hold their payments. Gateways are like banks that people use in the real world 
to hold their money. Gateways hold user funds issued to the gateway in fiat currencies and create equivalent 
issuances in the Ripple/Stellar network, which reflect as an account balance in the global blockchain. A payment 
transaction can be verified by all nodes by referring to account balances in the global blockchain. Transaction 
settles by adjusting balances in the blockchain. Market-makers provide the required liquidity in this network. 
Market-makers maintain accounts with multiple gateways and in multiple currencies. They can trade in multiple 
currencies and their liquidity is used to settle trades and payment transactions. Since most transactions deal 
with payments in fiat and other cryptocurrencies, it is of utmost importance that the protocol orders transactions 
consistently to prevent double spend attacks. Ripple and Stellar use their own consensus models that are a 
derived form of Byzantine Fault tolerance modified to include open-ended participation from users, gateways 
and market-makers.

Ripple Consensus Protocol Algorithm - Ripple protocol requires each node to define a Unique Node List 
(UNL). The UNL comprises of other Ripple nodes that are trusted by the given node not to collude against it. 
Consensus in the Ripple network is achieved by each node by consulting other nodes in its UNL. Each UNL 
has to have a 40% overlap with other nodes in the Ripple network [12]. Consensus happens in multiple rounds 
where each node collects transactions in a data structure called “candidate set” and broadcasts its candidate 
sets to other nodes in its UNL. Nodes validate the transactions, vote on them and broadcast the votes. Based 
on the accumulated votes, each node refines its candidate set and transactions receiving the largest number 
of votes are passed to the next round. When a candidate set receives a super-majority of 80% of votes from all 
nodes in the UNL, the candidate set becomes a valid block or in Ripple terms a “ledger”. This ledger is finalized 
and considered the “Last Closed Ledger (LCL)” and added to the Ripple blockchain by each node. Next round of 
consensus is started with newer transactions and pending transactions that did not make it into the last round of 
consensus. Consensus in the entire network is reached  when each individual sub-network reaches consensus.

Stellar Consensus Protocol - Stellar Consensus protocol algorithm [13] uses the concept of quorums and 
quorum slices. Quorum is a set of nodes sufficient to reach agreement. A quorum slice is a subset of a quorum 
that can convince one particular node about agreement. An individual node can appear on multiple quorum 
slices. Stellar introduces quorum slices to allow each individual node to choose a set of nodes within its 
slice thereby allowing open participation. These quorum slices and quorums are based on real life business 
relationships between various entities thereby leveraging trust that already exists in business models. To reach 
global consensus in the entire systems, quorums have to intersect. Overall consensus is reached globally from 
decisions made by individual nodes. 

The consensus protocol works as follows. Each node first performs initial voting on transactions, also generically 
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considered as statements.  This is the first step of the federated voting process. Each node performs its selection 
of statements and will never vote for another statement contradicting its selection.  It can however accept a 
different statement if its quorum slice has accepted a different one. Second step is the acceptance step. A node 
accepts a statement if it has never accepted a statement contradicting the current statement and each node in 
its v-blocking set has accepted that statement. A v-blocking set is a set of nodes one each from a quorum slice 
to which the current node belongs to. Quorum slices influence one another leading to quorums that agree on 
a certain statements. This step is known as ratification when all members of a quorum agree on a statement. 
Confirmation is the final step of the voting process and signifies system level agreement. This step ensures that 
nodes send each other confirmation messages so that all agree upon the final value of the state in the system.

Comparative Analysis

Below, we present a comparison of the consensus model categories that we discussed so far in this document. 
Table 1 below summarizes our findings, which are further elaborated in this section.

Table 1: A comparison of popular blockchain consensus mechanisms

Blockchain type - Blockchain type indicates the type of blockchain platform – permissioned or permissionless, 
in which the consensus model can be used. This is mainly governed by the type of membership allowed by the 
consensus model. While PoW and Federated BFT models are built exclusively for permissionless platforms with 
open-ended participation, they can technically be used with permissioned platforms but won’t be ideal in that 
setting. 

PoW PoS PoET BFT and 
variants Federated BFT

Blockchain 
type Permissionless Both Both Permissioned Permissionless

Transaction 
finality Probabilistic Probabilistic Probabilistic Immediate Immediate

Transaction 
rate Low High Medium High High

Token 
needed? Yes Yes No No No

Cost of 
participation Yes Yes No No No

Scalability of 
peer network High High High Low High

Trust model Untrusted Untrusted Untrusted Semi-trusted Semi-trusted

Adversary 
Tolerance <=25% 

Depends 
on specific 

algorithm used
Unknown <=33% <=33%
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Transaction finality - Transaction finality indicates whether the transaction once added to a block in the blockchain 
is considered final. PoW and PoET based consensus models carry the risk of multiple blocks being mined at 
the same time due to their model of leader election in combination with network latencies. Since this generates 
temporary forks in the blockchain and there is eventual chain that becomes the main chain, transactions that 
were previously confirmed and ended up is losing blocks will get rejected. This leads to a probabilistic transaction 
finality model where clients will have to wait much longer for transactions to be confirmed and finalized. With 
PoS, temporary forks can co-exist for short times if validators vote in parallel on multiple chains to maximize 
their rewards. However, a good PoS algorithm like Casper can impose penalties for voting on multiple chains 
causing them to lose security deposits. This will disincentivize validators from exhibiting greedy behavior. In such 
systems, the chain with maximum stake behind it is the final chain. In the other models with immediate finality, 
once the transaction is included in the block, it is confirmed and will not be rolled back.

Transaction rate - Transaction rate is higher with platforms that can confirm transactions immediately and reach 
consensus fast. PoW approaches are probabilistic and have to spend significant amount of time solving the 
cryptographic puzzle. Therefore these models have high transaction latencies and therefore a low transaction 
rate. PoET might be able to support much higher transaction rate because of a faster mechanism for leader 
election compared to PoW. Therefore, it supports medium transaction rate. BFT based approaches, PBFT and 
PoS can confirm transactions fast and are expected to support high transaction rates.  

Token needed? -  A cryptographic token is inherently required for PoW and PoS models as their design itself is 
based on existence of the token. Other three models do not require a token for consensus to function. It might 
however be used in certain platforms using these models mainly as an anti-spam anti-DDoS measure. 

Cost of participation - PoW and PoS have an inherent cost associated for participation in consensus. PoW 
requires expending energy, which is a resource that is external to the consensus protocol, while PoS requires 
nodes to buy some initial cryptocurrency to generate a security deposit for declaring interest and bonding with 
the platform. 

Scalability of peer network - Scalability of the consensus models is its ability to reach consensus when number 
of peering nodes are constantly increasing. All models summarized above, except BFT and variants, have high 
scalability. For BFT and variants it is recommended to keep the number of peers in consensus network to less 
than 20. Increasing the number of peers beyond 20 causes an increase in the number of messages sent between 
them resulting in a huge amount of overhead. 

Trust model - Trust model determines if the nodes participating in the consensus have to be known or trusted. 
In PoW, PoS and PoET, nodes can be untrusted as the mechanism to reach consensus is based on other means 
such as computational work or security deposits. As long as more than 25-50% of the network is not adversarial, 
consensus decisions will not be affected. With blockchains using BFT, peering nodes have to be known and 
registered with the system to be involved in consensus decisions. The nodes can get compromised or contain 
bugs in code but as long as more than 33% of the nodes are not compromised, consensus process will be intact. 
With Federated Byzantine agreement, each node has to ensure that it include its trustworthy nodes in its trusted 
list.  

Adversary tolerance - The fraction of the network that can be compromised without the consensus being 
affected. Each consensus model has a certain threshold to adversary tolerance.
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Conclusions

Consensus models used by popular blockchain platforms today are largely driven by the type of applications the 
platform expects to cater to and the threats it envisages to the integrity of the chain.  Typically the permissionless 
platforms are achieving robust consensus among very high number of untrusted peers using computational or 
memory complexity while sacrificing transaction finality and throughput. On the other hand, the permissioned, 
consortium blockchains are opting for a less scalable but much higher throughput model that ensures faster 
transaction finality. When looking at Blockchain to solve a business problem, it is imperative to look at the scale 
of the intended network, the relationships between participants, and both functional and non-functional aspects 
(such as performance and confidentiality) before determining the right platform and the right consensus model 
to use. We hope that this whitepaper sheds light on the background and current landscape of the consensus 
models and helps in that decision making.
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