
The Price of Stability in Selfish Scheduling Games

Lucas AGUSSURJA
The Logistics Institute Asia Pacific
National University of Singapore

tlila@nus.edu.sg

Hoong Chuin LAU
School of Information Systems

Singapore Management University
hclau@smu.edu.sg

Abstract

Game theory has gained popularity as an approach to
analysing and understanding distributed systems with self-
interested agents. Central to game theory is the concept of
Nash equilibrium as a stable state (solution) of the system,
which comes with a price − the loss in efficiency. The quan-
tification of the efficiency loss is one of the main research
concerns. In this paper, we study the quality and compu-
tational characteristic of the best Nash equilibrium in two
selfish scheduling models: the congestion model and the se-
quencing model. In particular, we present the following re-
sults: (1) In the congestion model: first, the best Nash equi-
librium is socially optimum and consequently, computing
the best Nash is NP-hard. And second, any ε-approximation
algorithm for finding the optimum can be transformed into
an ε-approximation algorithm for the best Nash. (2) In se-
quencing model for identical machines, we show that the
best Nash is no better than the worst Nash and it is easy to
compute. For related machines, we show that there is a gap
between the worst and the best Nash equilibrium. We left
the bounding of this gap for future work.

1 Introduction

Increasingly, business decision-making has evolved from
consideration of optimal performance within an organiza-
tion, to the ability to coordinate/contend with external agen-
cies while maintaining a self-interested optimal position
within bounded rationality. We observe scenarios of such
emerging behavior in supply chain systems for example. As
firms start exploring innovative collaboration strategies in
effort to improve their supply chain efficiency, getting mul-
tiple firms to agree on joint decisions has been identified as
one of the major research problems.

Game theory has become a key area in AI research. It
has gained popularity as an approach to analysing and un-
derstanding distributed systems with self-interested agents.
Central to game theory is the concept of Nash equilibrium

as a stable state (solution) of the system, which comes with
a price − a possible loss in efficiency. The problem of
finding Nash equilibrium is the most fundamental computa-
tional problem whose complexity is wide open?[15].

In this paper, we consider decentralized scheduling sys-
tems with independent, rational, and self-interested job
agents, where the overall system behavior and performance
is a result of the interactions and actions of these agents.
One scenario is autonomous job agents competing for re-
sources, where resources can be bandwith (e.g. in a net-
work) or processing power (e.g. in a Grid computing envi-
ronment). The role of the central planner is to design and
propose a mechanism/protocol mediating the interactions
among the agents. An agent can choose to follow or to de-
fect from the proposed protocol. Hence, it is an interesting
problem (especially from the planner’s standpoint) to ana-
lyze what system performance one can expect when selfish
agents interact according to a proposed protocol, and how
a stable solution that is mutually agreeable among agents
may be constructed. Put in game-theoretic terms, the game
designer is interested to know how to solve the scheduling
game and what the efficiency of the game would be, and
such information allows him to assess/estimate the perfor-
mance of the proposed mechanism.

This paper focuses on models with complete information
where all information are assumed to be available to all the
agents and the central authority. This allows both the central
authority and the agents to compute a Nash equilibrium. A
Nash equilibrium is a state of the system where no agent has
the incentive to singly defect away from it. Among all Nash
equilibria, we are interested to find the best one, where best
means one that maximizes the social welfare. Our study of
the quality of best Nash equilibrium (termed the price of
stability or POS) [2], which is measured by the ratio of the
best Nash equilibrium to the optimum, stands in contrast
with the broader line of work on the price of anarchy which
measures the ratio of the Nash equilibrium to the optimum
in the worst-case.

The price of stability is an important notion in cases
where players may be guided to play at the best Nash equi-

2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology

0-7695-3027-3/07 $25.00 © 2007 IEEE
DOI 10.1109/IAT.2007.37

307

2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology

0-7695-3027-3/07 $25.00 © 2007 IEEE
DOI 10.1109/IAT.2007.37

305

2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology

0-7695-3027-3/07 $25.00 © 2007 IEEE
DOI 10.1109/IAT.2007.37

305

2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology

0-7695-3027-3/07 $25.00 © 2007 IEEE
DOI 10.1109/IAT.2007.37

305

librium. This happens for instance in most networking ap-
plications where agents are neither centrally controlled nor
completely unregulated; rather, they interact with an under-
lying protocol that essentially proposes a collective solution
to all participants, who can each either accept or defect from
it. As a result, it is in the interest of the protocol designer to
seek the best Nash; this can naturally be viewed as the op-
timum subject to the constraint that the solution be stable,
with no agent having an incentive to unilaterally defect once
it is offered. Indeed, one can view the activity of the pro-
tocol designer seeking the best Nash as being aligned with
the general goal of mechanism design to produce a game
that yields good outcomes when players act in their own
self-interest.

The objective of our work is to deepen understanding of
game theoretic scheduling models. While much of the liter-
ature (see below) has focussed on analyzing its worst case
behavior, in this paper we are concerned with the compu-
tational complexity of computing the best equilibrium, as
well as the quality guarantee of such a solution. We con-
sider only pure Nash equilibria and seek to quantify the
gap between the best and the worst Nash equilibrium. We
obtain the following results on two different models:

1. In the congestion model: the price of stability is 1 (i.e.
no loss of efficiency), and thus the gap is exactly the
price of anarchy.

2. In the sequencing model: (a) For identical machines,
the price of stability is equal to the price of anarchy.
Hence there is no gap between the worst and the best
Nash equilibrium. (b) For related machines, we iden-
tify a gap between the worst and the best Nash equilib-
rium although the analytical bound on the gap is left as
future work.

2 Notation and Definitions

We consider scheduling games that consist of: (1) a set
of machines indexed by M = {1, 2, ...,m}, and (2) a set of
jobs indexed by J = {1, 2, ..., n}, where each job j ∈ J has
a length (processing time) of lj . Each job is viewed as an
agent whose decision is to choose the machine on which the
job is to be processed (the term job and agent will be used
interchangeably henceforth). Let xj ∈ M be the strategy
(decision) of job j, and let x = (x1, x2, ..., xn) denotes
a strategy profile (schedule) of the jobs. We assume that
jobs are processed non-preemptively by the machines. We
consider 2 types of machines as follows:

• identical machines: all machines have the same speed,
and the processing time of a job j on machine i is just
lj .

• related machines: the machines can have different
speeds. The processing time of a job j on machine
i is lj/si, where si is the speed of the machine.

The social objective of the central authority is to derive a
schedule that minimizes the overall makespan, for example
in related machines, it is to minimize the cost function:

F (x) = max
i∈M

1
si

∑
j:xj=i

lj .

Given a schedule x, a critical machine in x is a machine
with the maximum total processing time. Note that there
can be more than one critical machine in a given schedule.

Each agent is self-interested and wants to minimize its
own completion time (the time when the job is completed
and released by the machine). We consider the following
two popular models in the literature with different agent
utility functions:

1. Congestion model. This model assumes that a job is
released by a machine after all the jobs in that machine
have been processed. In this case, the utility function
of a job j in related machines is:

uj(i, x−j) = − 1
si

∑
k:xk=i

lk,

which is also the negative of machine i’s total process-
ing time. Note that all the agents in the same machine
have the same utility.

2. Sequencing model. This model assumes that a job
is released immediately after it is processed. For this
model, a sequencing policy is needed for each of the
machine. Two examples of such policy are: SPT
(shortest processing time first) and LPT (longest pro-
cessing time first). In this case, the utility function of a
job j in related machines is:

uj(i, x−j) = − 1
si

∑
k:xk=i∧k�ij

lk,

where �i defines an ordering on the set J and its def-
inition depends on the sequencing policy used by ma-
chine i. In this work, we assume that in a sequenc-
ing model, all the machines adopt the same sequencing
policy, and � is used to denote the ordering.

A Nash equilibrium (or simply Nash) solution is a strat-
egy profile x′ = (x′

1, x
′
2, ..., x

′
n) such that for every job j

we have:

uj(x′
j , x

′
−j) ≥ uj(xj , x

′
−j) ∀xj ∈ M.

308306306306

Given a Nash solution, no agent has the incentive to de-
fect from it assuming all the other agents follow the solu-
tion. The best Nash solution in this case is one that mini-
mizes the objective function F (x). One can thus view the
problem of finding the best Nash solution as an optimization
problem, i.e. find x that minimizes F (x) with a constraint
that x must be a Nash equilibrium. Given a game, let N
be the set of all the Nash solutions and x∗ be the optimum
solution, the price of stability (POS) of the game is given
by:

min
x′∈N

F (x′)
F (x∗)

while the price of anarchy (POA) is one that maximizes the
expression.

A best response Rj(x−j) is the set of strategies which
produces the most utility for the job j, given the other
job strategies x−j , i.e. x′

j ∈ Rj(x−j) iff uj(x′
j , x−j) ≥

uj(xj , x−j) for all xj ∈ M . We can redefine a Nash solu-
tion using best response as follows: A strategy profile x′ is
a Nash solution iff ∀j ∈ J , x′

j ∈ Rj(x′
−j). Given a strategy

profile (xj , x−j), a selfish move by a job j changes the pro-
file to (x′

j , x−j) such that uj(x′
j , x−j) > uj(xj , x−j) and

x′
j ∈ Rj(x−j). Note that the definition requires a selfish

move to be strictly increasing the job’s utility.

3 Related Work

In this section, we present known results on the price
of anarchy for different types of scheduling models. For
a more comprehensive survey, refer to [13]. The price of
anarchy for congestion models is:

• 2 − 1/m for m identical machines [1].

• Θ
(

log m

log log m

)
for m related (restricted) machines [7,

11].

The price of anarchy for sequencing models when SPT pol-
icy is used is:

• 2 − 2/(m + 1) for m identical machines [18].

• Θ(log m) for m related (restricted) machines [13].

• at most m for m unrelated machines [13].

And the price of anarchy when LPT policy is used is:

• 4/3 − 1/(3m) for m identical machines [6].

• at most 2 − 2/m for m related machines [13].

• Θ(log m) for m restricted machines [3, 13].

The price of stability in network design game with fair
cost allocation is studied by [2] and is at most 1+ 1

2 +...+ 1
n ,

with n number of players.

On complexity of finding a Nash equilibrium the follow-
ing results are known. Computing mixed Nash equilibrium
in 2, 3 and 4-player general normal form game is is PPAD-
complete [5, 9, 8]. For computing pure Nash equilibrium,
the results are known for a class of games called ordinal
(generalized) potential game which is in PLS. And com-
puting a pure Nash equilibrium in potential games which
is a subset of ordinal potential games is PLS-Complete
[10]. Recent algorithmic attempts to find a Nash equi-
librium from AI community includes using mixed-integer
programming [17], search methods [16] and continuation
method [4].

4 Congestion Model

In this section, we present the result on congestion model
first specifically to scheduling games and then its general-
ization to potential games.

4.1 Congestion Model for Scheduling
Games

We present the result on congestion model in scheduling
games, starting with m = 2 machines. For simplicity, the
proof for the following result assumes identical machines,
but it holds for related machines as well.

Proposition 1. The optimum solution for congestion model
with 2 machines is a Nash solution.

Proof. Let L1 and L2 be the total processing time of the
first and second machine respectively given the optimum
solution x∗. If L1 = L2 then x∗ is a Nash solution because
no job can improve its utility by changing its strategy. Now,
w.l.o.g. assume that L1 > L2 and let δ = L1 − L2. If x∗ is
not a Nash solution, then there exist a job j that can change
its strategy and obtained a better utility. This can happen iff
j is in machine 1 and lj < δ. If job j is moved to machine
2, then we obtained a new schedule x′ with cost F (x′) =
max(L1−lj , L2+lj). Since L2+lj < L2+δ = L1, we have
F (x′) < L1 = F (x∗), thus contradicting the optimality of
x∗. Therefore, x∗ is a Nash solution.

This also implies that the best Nash solution is an opti-
mum solution, and there is no loss of efficiency if the best
Nash solution can be achieved, i.e. the POS is 1. For more
than 2 machines, the optimum solution is not always a Nash
solution, but the best Nash solution is still an optimum so-
lution. The following sequence of results are derived for
m > 2 machines.

Lemma 2. In congestion model, the cost of the new sched-
ule x′ resulting from a selfish move on an initial schedule x
is at most the cost of the initial schedule, i.e. F (x′) ≤ F (x).

309307307307

Proof. From proposition 1, we know that if a selfish
move is made by a job from any machine i, with to-
tal processing time Li, to any machine k with total
processing time Lk, the result of the move is a new
schedule with total processing time L′

i and L′
k for ma-

chine i and k respectively such that max(L′
i, L

′
k) <

max(Li, Lk). Since the cost of the schedule x is F (x) =
max(L1, ..., Lm), if i is the only critical machine in x
then we have F (x′) = max(L1, ..., L

′
i, ..., L

′
k, ..., Lm) <

max(L1, ..., Lm) = F (x), otherwise F (x′) = F (x).

Note that in congestion model, although a selfish move
affects the utility of other agents, it does not reduce the
overall quality of the schedule; And for 2 machines, a self-
ish move even strictly reduces the cost of the schedule.
The next result shows that any arbitrary schedule can be
turned into a Nash solution by repetitive application of self-
ish moves. Again for simplicity, we assume identical ma-
chines in the argument of the proof.

Lemma 3. In congestion model with m machines, the num-
ber of selfish moves needed to change an arbitrary schedule
to a Nash solution is at most O(mn), where n is the number
of jobs.

Proof. We first give a looser bound by allowing the se-
quence of best responses to be made by arbitrary jobs,
and strengthen it later by giving a procedure for choosing
the next job for selfish move. Given an arbitrary sched-
ule x, let Li be the total processing time of machine i, i.e.
Li =

∑
j:xj=i lj and let δ = maxiLi − miniLi be the dif-

ference of the longest processing time to the shortest pro-
cessing time. Observe that every best response by a job j
always moves j to the machine with the shortest process-
ing time, and there are at most m machines with the short-
est processing time. Thus, after at most m selfish moves
the value miniLi will increase by at least l′ where l′ is the
length of the shortest job, which also means the value of δ
will decrease by at least l′. When δ is reduced to less than
l′, no more best responses can be made and a Nash solution
is reached. Let N be the number of best responses needed
to reduce δ to less than l′, we have:

δ − N

m
× l′ < l′ ⇒ N > m(δ − l′)/l′.

Hence, the number of best responses needed to change x
into a Nash solution is at most the smallest N that satis-
fies the above inequality which is O(mL) when δ = L and
l′ � L. Now to strengthen the bound, instead of using an
arbitrary job for the next best response, pick one from one of
the critical machines. Note that after the move, the machine
considered may no longer be a critical machine. Repeat this
process for resulting new schedule and so on until no more
best responses are possible for the jobs in a critical machine.

This critical machine together with the jobs in it can then be
removed from consideration. The process is then continued
until all the machines are removed. Now consider all the
removed machines with the jobs, the resulting schedule is a
Nash solution and the number of selfish moves made is at
most m × n.

The constructive proof of Lemma 3 gives us a polyno-
mial time algorithm for constructing a Nash solution from
an arbitrary schedule by using only selfish moves until con-
vergence. The proof also shows why the procedure con-
verges: every selfish move reduces the value of δ and since δ
cannot be reduced beyond 0, the procedure converges. This
procedure is sometimes called Nashification, e.g. in [11].
Using the 2 lemmas from above, we have the following:

Theorem 4. In congestion model with m machines, the best
Nash solution is an optimum solution.

Proof. Starting with an optimum solution x∗, by Lemma
3 we can turn this into a Nash solution x′ by repeated
application of selfish moves, and by Lemma 2 we have
F (x′) ≤ F (x∗) since only selfish moves are used which
means x′ is also an optimum solution.

As a consequence, because the best Nash solution is op-
timal, any algorithm that computes the best Nash can be
used directly for computing the optimum. And since find-
ing the optimum solution for identical machine scheduling
is NP-hard even for m = 2 [12], we arrive at the following.

Corollary 5. Computing the best Nash solution for con-
gestion model in a m-identical machine scheduling game is
NP-hard, even for m = 2.

Another consequence is the following approximation re-
sult.

Corollary 6. Any polynomial time ε-approximation algo-
rithm for a given machine scheduling problem can be trans-
formed into a polynomial time ε-approximation algorithm
for computing the best Nash in the corresponding schedul-
ing game.

Since the best Nash and the optimum solution have the
same cost, any polynomial time algorithm that approximate
the optimum with ratio ε can also be used to approximate
the best Nash solution with the same ratio by appending
the Nashification procedure described above into the algo-
rithm. Since the Nashification procedure requires polyno-
mial number of steps and does not increase the cost of the
initial schedule, the same ratio ε holds.

4.2 Generalization to Potential Games

The scheduling games we have considered thus far be-
long to a larger class of games called the potential games

310308308308

[14]. A potential game is a game that exhibits a potential
function φ(x) on the set of strategy profiles such that, if x′

is a profile obtained by changing the strategy of one player j
in x then uj(x′) > uj(x) implies φ(x′) > φ(x). The exis-
tence of this function is typically used to show the existence
of pure Nash equilibrium.

Interestingly, although the result in the previous section
are derived for scheduling games, it also applies to the larger
class of potential game, thus can be used to characterize the
behavior of the best Nash equilibrium in this class. We de-
fine congestion model in potential games such that given
a strategy profile, a utility-improving move on this profile
does not reduce the overall quality of the profile. More pre-
cisely, the generalized congestion model is a game consist-
ing of a cost function F (x) and a potential function φ(x),
such that if x′ is a strategy profile obtained from x by one
step utility-improving move on player j (uj(x′) > uj(x)),
then:

1. F (x′) ≤ F (x), and

2. φ(x′) > φ(x).

The following lemma is known for potential games:

Lemma 7. [14] Every finite potential game has the fi-
nite improvement property, and every maximal improvement
path terminate in a Nash equilibrium.

An improvement path is a sequence (x0, x1, ...) of strat-
egy profiles such that for every k > 0 there is a utility-
improving move made by one job from xk−1 to xk. A game
has the finite improvement property if every improvement
path is finite. We can then state the following:

Theorem 8. In a potential game with congestion model, the
best Nash solution is an optimum solution.

Proof. Similar to the proof of theorem 4, let the optimum
solution x∗ be the initial point of a maximal improvement
path. By Lemma 7, this maximal improvement path is finite
and terminates in a Nash equilibrium. Each step in the path
is a utility improvement move by one player and by defi-
nition, this move does not increase the cost of the overall
profile. Thus the Nash equilibrium is also optimal.

A point of clarification may be needed. Lemma 7 merely
establishes that potential games have finite improvement
property. Generally, the number of steps required by the
maximal improvement move to terminate can be very large.
Hence to prove NP-hardness for scheduling games under
congestion model (Corollary 5), one still needs to show that
there is a polynomial reduction from optimum to the best
Nash, and we did this in Lemma 3 (rather than directly us-
ing Lemma 7). Similarly, the polynomial reduction is also
necessary to establish Corollary 6.

5 Sequencing Model

In contrast with the congestion model discussed above,
in a sequencing model, a job is released by a machine im-
mediately after it has been processed. This means that a
sequencing policy is needed for a machine to determine the
order of processing a given set of jobs on that machine. Ex-
amples of commonly used policies are: SPT policy (to pro-
cess the jobs in order of nondecreasing processing time) and
LPT policy (to process the jobs in order of nonincreasing
processing time). A job j is said to precede a job k (de-
noted j � k) iff job j will always be processed before or at
the same time as job k. Assuming that all the machines have
the same policy (e.g. all SPT or all LPT), then there is a to-
tal ordering on the jobs to be processed across all machines
no matter whether the machines are identical or related (ties
broken arbitrarily). Hence, we will use an ordering � on
the set J to represent the sequencing policy used.

5.1 Sequencing Model in Identical Ma-
chines

We will start first by considering identical machines. Re-
call that the utility of a job j given a strategy profile x in
identical machines is given by:

uj(i, x−j) = −
∑

k:xk=i,k�j

lk.

The expression above shows that the utility of a job j will
only depend on the decisions of the jobs that precede j. For
the first job in the ordering, its utility does not depend on
the decisions of the other jobs because no matter what the
decisions of the other jobs are, it will always be processed
first and its completion time depends only on the machine
it chooses. For the second job, its utility depends only on
the decision of the first job and so on. Since each job wants
to maximize its own utility, the set of strategies that the job
will take is exactly its best response. By definition, the best
response of a job j is the following:

Rj(x−j) =
arg min

i∈M

lj +

∑
k:k �=j,x′

k=i,k�j

lk

 .

Like its utility, the best response of a job j depends only
on the decisions of the jobs that precedes j. The follow-
ing result states that under sequencing model with identical
machines, all the Nash solutions have the same cost.

Theorem 9. The Nash equilibrium solutions for scheduling
games with identical machines using a sequencing policy �
have a unique cost.

311309309309

Proof. Let πk denotes the kth job in the ordering given by
�, we can then construct the best responses of the jobs se-
quentially by assuming that each jobs will only choose the
strategy from its best response and show that: each job’s
utility is uniquely determined and is independent of which
of the best response strategies are chosen by the job and the
previous jobs. This is shown by using strong induction as
follows:

1. (base step) The best response of the first job in the or-
dering is Rπ1 = M since all the machines have the
same speed. And this is the only best response of the
first job no matter what the strategies of the other jobs
are, its utility by choosing from its best response is
−lπ1 .

2. (base step) The best response of the second job is
M\{xπ1} if |M | > 1. Generally, for 1 < k ≤ |M |,
Rπk

= M\{xπ1 , ..., xπk−1} if all the jobs π1, .., πk−1

choose the strategy from their respective best response,
i.e. the job will always choose the available empty
machine. The utility achieved by job πk by playing
its best response is thus −lπk

. This is true no mat-
ter which of the best response strategies are chosen by
this job and the previous jobs.

3. (induction step) For k > |M |, by definition, the best
response of job πk is:

Rπk
(xπ1 , ..., xπk−1) =

arg min
i∈M

∑
j:1≤j≤k−1,xπj

=i

lπj
,

i.e. its best response Rπk
is the set of machines with

the minimum total processing time with all the pre-
vious jobs scheduled. ∀i ∈ Rπk

, let ji be the lat-
est job being processed by i in the current state (be-
fore πk chooses its strategy). All these jobs have the
same completion time thus the same utility. The util-
ity of job πk by choosing any strategy i ∈ Rπk

is
uπk

= (uji
− lπk

). Since ji � πk, by induction hy-
pothesis uji

is uniquely determined, thus uπk
is also

uniquely determined and is independent of the best re-
sponse strategies chosen so far. This ends the induction
step.

Since the jobs choose their strategy only from their respec-
tive best response, by definition, the set of possible resulting
schedules (after the last job chooses its strategy) is exactly
the set of Nash solutions. The cost of the Nash solution is
the latest completion time among all jobs. Since this value
is uniquely determined and is independent of the best re-
sponse strategies chosen, the cost of the Nash solutions is
uniquely determined.

As a consequence of Theorem 9, the best Nash solution
is no better than the worst Nash solution under sequencing

model with identical machines, and hence the price of sta-
bility is exactly the price of anarchy. The proof of the the-
orem also shows how to compute the Nash solutions. Note
that although the characteristic of the Nash solution derived
from above does not depend on a particular sequencing pol-
icy used, the exact bound on the POS does. With Theorem
9, we obtain the following two POS results directly via the
results on POA for identical machines, due respectively to
[1] and [6]:

Corollary 10. The price of stability in scheduling games
with m identical machines using SPT sequencing policy is
2 − 1/m.

Corollary 11. The price of stability in scheduling games
with m identical machines using LPT sequencing policy is
4/3 − 1/(3m).

Note that the POS of Theorem 10 is different from the
one stated in [13] which is 2 − 2/(m + 1). The result in
[13] is derived from the bound for the classical Ibarra-Kim
algorithm which produces a locally optimum solution for
the scheduling problem [18]. We like to point out that tere
is a subtle but important difference between a locally opti-
mal solution and a Nash solution. Consider the following
example: 3 jobs with length l1, l2 and l3 are to be sched-
uled on m = 2 identical machines with SPT sequencing
policy. Let’s assume that l1 = l2 = l3/2, and that on the
same machine, l1 will be processed first before l2. The op-
timal schedule in this case is to have job 1 and 2 in one
machine and job 3 in the other, with optimal cost of l3. The
unique Nash solution has job 1 and 2 scheduled on different
machines, and job 3 can be in either machines, for exam-
ple we put job 3 on top of job 2. The Nash solution has
the cost of l3/2 + l3 = (3/2)l3. The loss of efficiency in
term of ratio is (3/2)l3/l3 = 3/2, which is greater than
2−2/(m+1) = 4/3. The Nash solution however is not lo-
cally optimal because job 2 can move to the other machine
and improve the quality of the schedule. While a Nash solu-
tion is reached when no job can move and improve its own
utility, a locally optimal solution is reached when no job
can move and improve the overall quality of the schedule.
In this case, as shown by the example, they do not imply
each other.

5.2 Sequencing Model in Related Ma-
chines

For related machines, the result presented above does not
follow because the argument in the proof of Theorem 9, that
all job utilities can be uniquely determined regardless of the
best response strategies chosen, does not hold. As a counter
example consider the following game: 3 jobs with length
l1 = 10, l2 = 20 and l3 = 30 are to be scheduled on

312310310310

two machines with speed s1 = 6 and s2 = 4 using SPT
sequencing policy. The best response for each of the jobs
can be derived as follows:

1. Job 1’s utility does not depend on the strategies of the
other 2 jobs, and its best response is R1 = {1} since
s1 > s2. Its completion time is 5/3 and is uniquely
determined.

2. Job 2’s utility depends only on job 1’s strategy. If
job 1 plays its best response, job 2’s best response is
R2(x1 = 1) = {1, 2} since both machines give the
same completion time: (10 + 20)/6 = 20/4 = 5 and
is uniquely determined.

3. Job 3’s utility depends on both job 1 and 2’s strate-
gies. Since job 2 can play either strategy from its best
response, the best responses for job 3 are:

(a) R3(x1 = 1, x2 = 1) = {2}, with completion
time 30/4 = 7.5 which is smaller than (10 +
20 + 30)/6 = 10, its completion time if machine
1 is chosen.

(b) R3(x1 = 1, x2 = 2) = {1}, with completion
time (10 + 30)/6 = 6.67 which is smaller than
(20 + 30)/4 = 12.5 if machine 2 is chosen.

Thus the completion time for job 3 is not unique and de-
pends on which strategy is played by job 2 from its best re-
sponse. Consequently, the only 2 Nash solutions: (1, 1, 2)
and (1, 2, 1) have different costs of 7.5 and 6.67 respec-
tively and the gap between the best and the worst Nash so-
lution in this example is 9/8. This example also tells us that
the gap between the best and the worst Nash in sequencing
model with 2 related machines is at least 9/8. One future
direction for this work is to bound the gap between the best
and the worst Nash solution and generalize it to m related
machines.

6 Conclusion and Future Work

In this paper we studied a class of scheduling games,
and provided results on the computational complexity for
computing the best Nash equilibrium, as well as the quality
guarantee (price of stability) for such a solution. While we
have closed the problem on the congestion model, we only
managed to obtain results for identical machines on the
sequencing model. Although we managed to show a gap
between the worst and the best Nash equilibrium for related
machines, the bound on this gap is still unknown and left as
future work. It is also interesting to extend the investigation
on a more general class of congestion (potential) games.

Acknowledgments This research was supported par-
tially by the Singapore Management University under grant
number C220/MSS6C007.

References

[1] E. Angel, E. Bampis, and F. Pascual. Truthful algorithms for
scheduling selfish tasks on parallel machines. In Theoretical
Computer Science, 2006.

[2] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos,
T. Wexler, and T. Roughgarden. The price of stability in
network design with fair cost allocation. In Symposium on
Foundations of Computer Science (FOCS), 2004.

[3] Y. Azar, J. Naor, and R. Rom. The competitiveness of on-
line assignments. In Journal of Algorithms, volume 18,
pages 221–237, 1995.

[4] B. Blum, C. R. Shelton, and D. Koller. A continuation
method for nash equilibria in structured games. In Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
2003.

[5] X. Chen and X. Deng. Settling the complexity of 2-player
nash-equilibrium. In ECCC Report, 2005.

[6] G. Christodoulou, E. Koutsoupias, and A. Nanavati. Coor-
dination mechanisms. In International Colloquium on Au-
tomata, Languages and Programming (ICALP), 2004.

[7] A. Czumaj and B. Vocking. Tight bounds for worst-case
equilibria. In Symposium on Discrete Algorithms (SODA),
2002.

[8] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The
complexity of computing a nash equilibrium. In Symposium
on Theory of Computing (STOC), 2006.

[9] C. Daskalakis and C. H. Papadimitriou. Three-player games
are hard. In ECCC Report, 2005.

[10] A. Fabrikant, C. H. Papadimitriou, and K. Talwar. The com-
plexity of pure nash equilibria. In Symposium on Theory of
Computing (STOC), 2004.

[11] M. Gairing, T. Lucking, M. Mavronicolas, and B. Monien.
Computing nash equilibria for scheduling on restricted par-
allel links. In Symposium on Theory of Computing (STOC),
2004.

[12] M. R. Garey and D. S. Johnson. Computer and Intractabil-
ity: A Guide to the Theory of NP-Completeness. W. H. Free-
man, 1979.

[13] N. Immorlica, L. Li, V. S. Mirrokni, and A. Schulz. Co-
ordination mechanisms for selfish scheduling. In Internet
and Network Economics, volume 3828 of Lecture Notes in
Computer Science, pages 55–69. Springer, 2005.

[14] D. Monderer and L. S. Shapley. Potential games. In Games
and Economic Behavior, volume 14, pages 124–143, 1996.

[15] C. Papadimitriou. Algorithms, games, and the internet. In
Symposim on Theory of Computing (STOC), pages 749–753,
2001.

[16] R. Porter, E. Nudelman, and Y. Shoham. Simple search
methods for finding a nash equilibrium. In National Conf.
on Artificial Intelligence (AAAI), 2004.

[17] T. Sandholm, A. Gilpin, and V. Conitzer. Mixed-integer pro-
gramming methods for finding nash equilibria. In National
Conf. on Artificial Intelligence (AAAI)), 2005.

[18] P. Schuurman and T. Vredeveld. Performance guarantees
of local search for multiprocessor scheduling. In Interna-
tional Conference on Integer Programming and Combinato-
rial Optimization (IPCO), 2001.

313311311311

