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Fair Scheduling in Cellular Systems in the Presence
of Noncooperative Mobiles
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Abstract—We consider the problem of “fair” scheduling the re-
sources to one of the manymobile stations by a centrally controlled
base station (BS). The BS is the only entity taking decisions in
this framework based on truthful information from the mobiles
on their radio channel. We study the well-known family of para-
metric -fair scheduling problems from a game-theoretic perspec-
tive in which some of the mobiles may be noncooperative. We first
show that if the BS is unaware of the noncooperative behavior
from the mobiles, the noncooperative mobiles become successful
in snatching the resources from the other cooperative mobiles, re-
sulting in unfair allocations. If the BS is aware of the noncoopera-
tive mobiles, a new game arises with BS as an additional player. It
can then do better by neglecting the signals from the noncoopera-
tive mobiles. The BS, however, becomes successful in eliciting the
truthful signals from themobiles only when it uses additional infor-
mation (signal statistics). This new policy along with the truthful
signals from mobiles forms a Nash equilibrium (NE) that we call
a Truth Revealing Equilibrium. Finally, we propose new iterative
algorithms to implement fair scheduling policies that robustify the
otherwise nonrobust (in presence of noncooperation) -fair sched-
uling algorithms.

Index Terms—Channel quality indicator, fairness, incentive
compatibility, scheduling, signaling game, truth revelation.

I. INTRODUCTION

S HORT-TERM fading arises in a mobile wireless radio
communication system in the presence of scatterers, re-

sulting in time-varying channel gains. Various cellular networks
have downlink shared data channels that use scheduling mech-
anisms to exploit the fluctuations of the radio conditions (e.g.,
3GPP HSDPA [4] and CDMA/HDR [10] or 1xEV-DO [3]).
A central scheduling problem in wireless communications is
that of allocating resources to one of many mobile stations that
share a common radio channel. A lot of attention has been given
to the design of efficient and fair scheduling schemes that are
centrally controlled by a base station (BS) whose decisions de-
pend on the channel conditions of each mobile. These networks
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use various fairness criteria [6], [8] called generalized -fair
criteria to design a class of parametric scheduling algorithms
(which we henceforth call -fair scheduling algorithms or
-FSA). One special case, proportional fair sharing (PFS), has
been intensely analyzed as applied to the CDMA/HDR system.
See [5], [9], [10], [13], [14], [20], and [23]. These results are
applicable to the 3GPP HSDPA system as well. Kushner and
Whiting [18] analyzed the PFS algorithm using stochastic
approximation techniques and showed that the asymptotic
averaged throughput can be driven to optimize a certain system
utility function (sum of logarithms of offset-rates). See also
Stolyar [24].
The BS is the only entity taking decisions in all the above

methods, and the BS depends crucially on truthful reporting of
their channel states by the mobiles. For example, in the fre-
quency-division duplex system, the BS has no direct informa-
tion on the channel gains, but transmits downlink pilots and re-
lies on the mobiles’ reported values of gains on these pilots for
scheduling. A cooperative mobile will truthfully report this in-
formation to the BS. A noncooperative mobile will, however,
send a signal that is likely to induce the scheduler to behave in
a manner beneficial to the mobile.
Examples of nonstandard, noncooperative, and aggressive

transmission behavior are reported in WLANs. For example,
Mare et al. [2] report that certain implementations attempt more
frequently than the specifications in the IEEE 802.11 standard.
Bianchi et al. [1] also report noncooperative behavior. This is
presumably because the particular equipment provider wants
to make its devices more competitive. Such behavior may
occur in any system that uses an opportunistic scheduler in
the downlink to profit from multiuser diversity (e.g., HSDPA,
EV-DO). For instance, a noncooperative mobile can modify
its 3G mobile devices or laptops 3G PC cards, either by using
Software Development Kit (SDK) or the device firmware [26],
in order to usurp time-slots at the expense of cooperative
mobiles, hence denying them network access. Users of future
devices and software hackers may have the ability to reprogram
their mobile devices to gain scheduling advantage.
In [15] and [16], we analyzed efficient scheduling (the spe-

cial case with , wherein the scheduler maximizes the
sum throughput at the BS) in the presence of noncooperation by
modeling the interaction as a signaling game [25]. In this paper,
we consider the -fair schedulers with , where fairness is
also an important concern. The signaling game cannot be used
here because the utilities of the BS are not expected utilities, but
are concave combinations of the users’ expected utilities. Fur-
thermore, -fair scheduler (with ) has an inherent feed-
back feature (more details in Section II) that makes the study
difficult and different from the efficient scheduling [15], [16]
case. This paper has contributions to three main areas.
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Networking aspects:
1) When the base station is unaware of the noncoopera-
tive behavior, we identify cases where noncooperation
results in an unfair bias in the channel assignments in
favor of noncooperative mobiles.

2) We characterize the limitation of the BS and obtain
the conditions under which fair sharing is not possible
even when the BS is aware of noncooperation.

3) We show that the ability to achieve fair sharing, in the
presence of noncooperation, depends on the parameter
.

4) We design robust iterative algorithms that, under suit-
able conditions, fairly share the resources even in the
presence of noncooperative signaling.

Game-theoretical modeling:
1) We model a noncooperative mobile as a rational
player that wishes to maximize its throughput. Since
the -fair assignment is related to the maximization
of a related utility function, one can view the BS as
yet another player. We thus have a game model even
if there is a single noncooperative mobile.

2) We formulate three games of which one is a concave
game. The formulation of the games turns out to be sur-
prisingly complex. Except for the special case of
(where the game can be shown to be equivalent to ama-
trix game), the games are defined over an infinite set of
actions. Despite the complexities, we prove the exis-
tenceofequilibriaandcharacterize themfor twogames.

3) The third game arises when the BS is unaware of non-
cooperation. BS only responds to the mobiles, but in an
optimal way. We model this as a noncooperative game
with noncooperative mobiles as the only players. The
BS optimizes the same utility, being unaware of the
strategic behavior of the mobiles, however the utility
also depends upon mobiles signals. The mobiles are
aware of the BS optimization procedure and play to
maximize their own utilities.

4) To analyze iterative algorithms, we consider a non-
cooperative game with asymptotic time limits (which
equal average values of certain quantities) of the itera-
tive algorithm as cost criteria.

Design of networking protocols based on stochastic ap-
proximation techniques:
1) We show that the existing -fair scheduling algo-
rithms [18] fail in the presence of noncooperation.

2) Using the extra knowledge of type statistics, we pro-
vide a modification that is robust to noncooperation.

3) While our focus is on the downlink of a wireless net-
work, the same techniques are applicable in any allo-
cation setting where fairness is of concern.

The robust policies require the additional knowledge of
channel statistics. Estimating the channel statistics is well
studied in many papers. For example, in frequency division
duplex (FDD) systems, average channel state is available if
we assume that the BS is aware of the location of the mobile,
and if we assume that the state distribution is a function of
the location only. In time division duplex (TDD) systems,
the BS may be able to make uplink measurements and apply
it to downlink, thanks to uplink-downlink duality. These do
not depend on whether the mobile is cooperative or not. The
channel distribution can then be deduced from the measured
attenuation of a beacon whose power is known.

Fig. 1. User utilities versus for . Mobile 1 is noncooperative when
.

Fig. 2. User utilities versus for Mobile 1 is noncooperative when
.

We finally end this section by motivating the problem using
a simple example.

A. Motivating Example

We consider two users sharing a common channel. User 1 has
two channel states with utilities 7 and 3 occurring with proba-
bilities 0.33 and 0.67, respectively. User 2 has constant channel
with utility 4. The BS has to assign the channel to one of the
two users for every realization of the channel state, and every
such assignment rule results in a pair of users’ average utilities.
The BS uses an -fair scheduler (described in Section II) to al-
locate the channel resources. First, we assume that both users
cooperate and report their individual channel states correctly. In
Figs. 1 and 2 (see the curves with ; is a noncooperation
parameter and will be introduced in the next paragraph), we plot
the average utilities obtained by users under -fair scheduler as
a function of the fairness parameter . We make the following
observations.
1) For every , the BS always allocates the channel to user 1
if he is in good state.

2) For , the expected share of user 1 (7 0.33) is less
than that of the user 2 . This corresponds
to efficient scheduling point.

3) For small values of , BS allocates the channel to user 1
only when he is in good state.

4) The expected share of user 1 increases while that of user 2
decreases as increases, and eventually the shares become
equal. To achieve this, the BS starts allocating the channel
to the user 1, even when that user is in the bad state with
increasing probability.

The above scenario depends crucially upon the truthful re-
porting of channel by the user 1. Now, suppose that user 1 is
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noncooperative, wishes to increase his utility, and declares to be
in good state 7 with probability when actually in bad state 3.
BS now observes the “good channel” signal from user 1 with
higher probability and will schedule as before
but based on reported channel conditions. In Figs. 1 and 2, we
plot the resulting expected utilities of both the users as a function
of fairness for , , respectively. We observe that
the utility of user 1 for small values of is improved in com-
parison to its cooperative utility. This also reduces the utility of
the user 2 below its cooperative share, resulting in unfair al-
locations. In game-theoretic terms, reporting the truth is not an
equilibrium. This holds for all values of , ,
respectively, for , . However, for greater than
the above values, user 1 loses; in fact, its utility gets below its
cooperative share, while that of the user 2 is much above its
cooperative share. The above example indicates the following
regarding the -fair scheduler.
1) It might be robust against noncooperation for large values
of .

2) It fails for smaller values of .
3) The larger the , the larger the amount of gain at .
4) The larger the , the smaller the till which the mobile
gains.

5) The above observations suggest also that the only sched-
uler robust to all kinds of noncooperation (here ) is
the max-min fair scheduler . The study of this
noncooperation and design of robust policies is the focus
of our paper.

II. PROBLEM SETTING AND -FAIR SCHEDULER

We consider the downlink of a wireless network with one BS.
There are mobiles competing for the downlink data channel.
Time is divided into small intervals or slots. In each slot, one of
the mobiles is allocated the channel. Each mobile can be
in one of the states , where is a finite valued set.
We assume fading characteristics to be independent across the
mobiles. Let be the vector of channel
gains in a particular slot. The channel gains are distributed ac-
cording to: , where rep-
resent the statistics of the mobile channels. When the mobile’s
channel state is , it can achieve a maximum utility given by

. An example of utility is the rate
where captures the nominal received

signal-to-noise ratio under no channel variation.
In every slot, the BS has to make scheduling decisions, i.e.,

allocate the downlink slot to one of the users, based on the
current realization of the channel state vector . For any set ,
let be the set of probability measures on . A BS’s de-
cision is a function that assigns to any given an element
in , the probability distribution over the set
of users. Thus, is the probability that the BS schedules
current slot to mobile given channel state vector . One can
view , the scheduling policy, as a vector in space,1 with

1In major parts of our work (except for the stochastic approximation based al-
gorithms), we deal with the situation in which the channel states can take one of
the finitely many values, which in turn implies that the system has finite choices
of transmission rates. It is in these cases that we can assume . Indi-
rectly, we are assuming that each of the channel states represent an interval of
the actual channel state realizations.

, where is the cardinality of the product space
and it takes values in the set

for all

We introduce the well-known generalized -fair criterion [6]
where the quantity that we wish to share fairly is the expecta-
tion of the random (instantaneous) utilities corresponding to the
assignment by the scheduler to the mobiles. Required level of
fairness (dictated by parameter ) is achieved (see [6]) by an
assignment that maximizes the following function:

(1)

where is the expected share of
mobile under policy , and the -fair system utility function
is

for

for .

The objective function given by (1) is concave and con-
tinuous in for each , while the domain is compact and
convex. Hence, there always exists a cooperative -fair sched-
uling BS strategy

(2)

Remark II-1: Wemay view the BS’s schedule as a static opti-
mization problem that corresponds to a single choice of . No-
tice that the optimal schedule maximizes some function of
the expected shares of utilities. This expected share depends on
assignments at all channel states and is therefore a joint op-
timization problem. This feature arises when . When

, the problem is separable, and the solution for
a given depends only on that . Indeed, for , the im-
plicit (3) below highlights a certain “feedback” that is absent in
case when . This makes the present study significantly
different from our previous work on efficient scheduling with
strategic mobiles [15], [16].
Below, we show a key (feedback) property of fair sched-

ulers. Define as the vector (fixed point) that satisfies (if it
exists) the following:

(3)

where is the derivative of
with respect to (w.r.t.) evaluated at and is the
set of indices that attain the maximum. We now have Lemma 1.
Lemma 1: If there is a satisfying (3), then is a global

maximizer of the objective function in (2) over domain and
hence is an -fair scheduler.
Let , and

. The map is
strictly concave. Hence, there exists a unique maximizer (of the
expected assigned shares) over the convex set

(4)
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Hence, if there is a satisfying (3), then . Further-
more, any that is a global maximum of the objective func-
tion (2) satisfies the “efficiency” property: Whenever

either

or (5)

for all and for all .
Proof: Please refer to Appendix B.

Remark II-2: The assignment for particular state for
any mobile increases with the increase in the utility
of the state. This efficiency property is used in the analysis under
noncooperation.
Remark II-3: The solution (3) explicitly shows the feedback

we mentioned in Remark II-1. This solution has already been
used in practical scenarios [19] to achieve “fair” scheduling:
The -fair solution for the dynamic setting with ergodic channel
states is the optimal that shares fairly the time average utilities
over a single realization of a whole sample path.2 In fact, the so-
lution (3) under ergodicity can be implemented by the following
procedure. 1) At any time-slot , obtain the scheduling decision
using the current channel vector and using the time-averaged
assigned utilities obtained until the last step in place
of of (3). 2) Update (in the obvious way) the time-av-
eraged assigned utilities up to step , , using the current
scheduling decision.
A part of Lemma 1, regarding the possible solution (3), when

restricted to proportional fairness, is already stated in [19].
Remark II-4: By observing the -fair scheduler (3), one can

understand the possible ways by which the required level of
fairness is achieved.
1) Efficient scheduler for any given channel state
vector realization schedules with equal probability all
the users with the highest instantaneous rate, but ignores
fairness.

2) The scheduler in (3) with gives weightage to the de-
prived users via the gradient of the fair function before
making the scheduling decision.

3) The weightage depends upon the fairness index and the
expected utility that the particular user would have
obtained.

4) The larger the fairness index , the larger the emphasis
on fairness and hence a larger weightage to the users with
lesser expected utility.

III. PROBLEM FORMULATION UNDER NONCOOPERATION

In every slot, the BS needs the knowledge of for scheduling
purposes. In practice, mobile estimates channel using the
pilot signals sent by BS. We assume perfect channel estima-
tion. The mobiles send signals to BS, as indications of
the channel gains. The BS therefore does not have direct access
to channel state , but instead has to rely on the mobile’s sig-
nals for the information. If the mobiles are strategic, knowing

2For ergodic channels under appropriate conditions on the function

We are interested in a particular function whose av-
erage is exactly .

the allocation policy, they can signal a better channel condition
to grab the channel even when their channel condition is bad.
We assume that signals are chosen from the channel space

itself, i.e., for all mobiles. We shall consider two
settings: 1) unaware BS, and 2) rational BS.
Unaware BS, Game G1: The BS is unaware of the possible

noncooperative behavior from the mobiles and applies the
-fair scheduler (2) to the signals (as if
they were the true channel values). The mobiles are aware of
BS’s scheduling policy and signal to optimize their own goals.
We model this as a noncooperative game with noncooperative
mobiles as the players.
Rational BS: The BS is modeled as an additional player in

a one-shot game. When the BS becomes aware of the possible
noncooperation, it could implement better policies. We first
consider an player game G2, where the BS schedules
using only the signals from the mobiles as before. Because of
its awareness, however, it could do better than the situation of
game G1, but will not be successful in compelling the mobiles
to reveal their channel condition truthfully (Section V-A). In
Section V-B, we construct more intelligent (policies that require
more information) BS policies that would be robust against
noncooperation: the new robust BS policies and the truthful
signals from the mobiles form a Nash equilibrium (NE). We
refer this game as game G3.
We now introduce the important concepts and definitions that

are used in the paper. These are more specific to the first two
game scenarios. The corresponding definitions and concepts
may vary slightly for the game G3 and the differences are
explained directly in Section V-B.
Common Knowledge: Channel statistics of

all mobiles is common knowledge to all the mobiles and the BS.
We assume that all the mobiles are noncooperative, and this
is common knowledge to all the agents (see our paper [17] for a
case when only a few of them are strategic). Utilizing our robust
scheduling policies (proposed toward the end of the paper), the
BS can actually detect the mobiles that are noncooperative, and
then this knowledge will not be required.
Mobile Policies: A policy of mobile is a function

that maps a state to an element
in , where represents the probability with
which the mobile signals when the actual channel state is
.
BS Policies: A policy of the BS is a function that maps every

signal vector to a scheduler . More
complicated policies are considered in Section V-B and later.
Utilities for a Given Set of Strategies: The instanta-

neous/sample utility of the mobile depends only upon
the true channel and the BS decision and is given by (see
Appendix A)

(6)

Define the following to exclude mobile :
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Also define, to represent strategy profile

With the above definitions, each noncooperative user chooses
its strategy to maximize its own utility

(7)

Under -fair criterion (1), the natural choice of BS utility is

(8)

Throughout when has more than one element, by
we mean . By

we mean that is a chosen element of .
ASA and ATA Utilities: When mobile signals do not match

the true channel values, the game under consideration will have
two important average utilities for any given pair of strategy
profiles : 1) average signaled utilities under assignment
(ASA) utility, which a (more intelligent) BS can observe; and
2) average true and assigned (ATA) utility, which is the true
average utility gained by the mobile and whose value cannot
be estimated (so long as the mobile is noncooperative) by the
BS. These are defined by

(9)

(10)

From (6) and (7), we see that the utility of mobile is its ATA
utility, i.e., .
Truth-Revealing Strategy and the TRE: In the following, by

truth-revealing strategy at mobile , we mean the strategy

for all

that signals the true channel state. Let .
Under truthful strategies , ATA and ASA utilities coincide.
For any BS policy , if strategy profile forms an NE,
then we call the NE a Truth Revealing Equilibrium (TRE).
Cooperative Shares: Best response of BS to truthful signals
is any maximizer of given by (1). By Lemma 1, the

best response results in unique maximum average ATA utilities

(11)

which we will call Cooperative Shares.
Contrast Between Unaware BS and the Rational BS: Recall

that computing a fair assignment by BS involves maximization
of (1). Thus, in the first scenario, when mobiles choose profile ,
the unaware BS attempts to share ASA utilities in a fair fashion
under by maximizing (14) (see Section IV). However, what
needs to be shared fairly are the ATA utilities. This is achieved
via the game perspective, wherein the rational BS tries to share
the ATA utilities gained by the mobiles in a fair fashion.

IV. SCHEDULING UNDER NONCOOPERATION: UNAWARE BS,
GAME PROBLEM G1

We consider the scenario in which the BS is unaware of the
presence of noncooperative mobiles. As in the cooperative set-
ting, the BS allocates the channel [using optimal scheduler (2)]
to one of the mobiles. The mobile signals are assumed to reflect

the channel state perfectly. Each mobile is aware of the BS’s
scheduling policy and strategies to maximize its utility.
Utilities of G1: For any givenmobile strategy profile , let the

induced signal probabilities be represented by , i.e.,
. Since the BS observes (instead of ), it

assumes the expected shares of mobile to be
and hence for the purpose of scheduling, it

blindly maximizes

(12)

We note that the expected shares are exactly the
mobile ASA utilities and that the utility (12) maximized
by BS can be referred as the ASA utility of the BS .
We model this as an -player noncooperative game and study
its Nash equilibrium.
Nash Equilibrium for G1: This is a profile that satisfies

the following for all :

(13)

where is the scheduler utilized by the unaware BS, which
gets affected by mobiles strategies in the following way:

(14)

We now present some examples in which a user deviates
unilaterally from and increases its utility above its cooper-
ative share, resulting in unfair allocations. These examples do
not have TRE for G1, i.e., truthful strategy profile is not
a Nash equilibrium of G1. In particular for (14), we consider
-fair scheduler given by (3). This scheduler is widely used in
practice (see Remark II-3).

A. Asymmetric Examples

1) Proportional Fair Scheduler : We continue with
the motivating example of Section I. User 1 has two states with
respective utilities given by and with . The respective
probabilities to be in one of these states are with

. User 2 has a single state with utility .
Using (3), one can easily estimate and to be:

(15)

Note that are the mobile’s cooperative shares.
It is important to note here that satisfying (3) exist only if

because in this case

Suppose user 1 signals (when actually in state ) with prob-
ability , i.e., . Then, users’ maximum ASA rates
[note that defined in (15)] are

respectively whenever
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With this, the mobile 1 obtains an improved ATA utility
, i.e., mobile 1 is successful

in improving its utility (above its cooperative share) by sig-
naling noncooperatively. The maximum possible value of is

.
2) Extension to General : Computing as before, one can

show that an -fair scheduler satisfying (3) exists, i.e., the fixed
point exists, if

As increases, the maximum for which the solution in (3)
exists reduces. Thus, given , there exists a maximum

, beyond which there does not exist an -fair scheduler of
the type (3). When the -fair scheduler in (3) exists, the non-
cooperative mobile benefits. Given , the maximum with
which the mobile can benefit from noncooperation is

For example, with , , , , the maximum
for which the -fair scheduler in (3) exists is 7.9, and user 1

can benefit by signaling with for all .
3) Generalization to More States and General : Consider

two asymmetric users under the following assumptions:
N.1) The cooperative -fair solution in (3) exists, and

without loss of generality, let .
N.2) There exists an such that

where are arranged such that
.

Lemma 2: Under N.1 and N.2, there exists a signaling
policy for mobile 1 that is not a TRE, i.e., its ATA utility

is larger than its cooperative share .
Proof: The proof is available in Appendix C.

Assumptions N.1 and N.2 represent an example set of condi-
tions under which the -fair scheduler fails. The first condition
ensures that a scheduler exists. The second condition ensures
that there is a channel condition for mobile 1 with an advantage
with respect to all the channel conditions of mobile 2. When
this happens, mobile 1 can deviate by a positive amount that
depends upon the gap and obtain better utility than its coop-
erative share.

B. Symmetric Case

We consider a simple symmetric two mobile example. The
mobiles have two states with utilities occurring respec-
tively with probabilities . Let , with

, . Under truthful signaling, by Lemma 1, an -fair
optimal BS policy (for any ) is given by

with equal cooperative shares

Without loss of generality, say mobile 1 deviates unilaterally
from its truthful revelation strategy with . If mo-
bile 1 was successful, its reported rate would be greater than

, which is obtained only when its declared state is
with mobile 2’s being . Thus, mobile 1 will be successful with
maximum ASA utilities with (user 1 gets allocated al-
ways and only when he signals his state as )

and the corresponding ATA utility

if the following conditions are met:

and

i.e., if and .

C. Robustness at Large

For small values of , -fair scheduler fails. However, we see
a different phenomenon at higher . As increases to infinity,
the “fairness” increases, and the expected shares, i.e., ATA util-
ities, of all the mobiles tend to become equal [21] provided all
the mobiles signal truthfully. However, in presence of nonco-
operation, it will be the ASA utilities that tend to become equal
for higher values of . This results in all the cooperative (ATA
equal ASA utilities) mobiles getting equal ATA shares that will
be bigger than that for the noncooperative (ATA are strictly less
than ASA utilities) mobiles. Thus, the -fair scheduler (2) itself
becomes more robust toward noncooperation as fairness factor
increases, though not fully unless , despite the BS’s un-

awareness of the noncooperation. This effect is seen in the mo-
tivating example as well as in Fig. 3 in Section VI. In Fig. 3, the
noncooperative mobile’s ATA utility diminishes as increases
and goes below its cooperative share beyond Fur-
thermore, the cooperative mobile gets more than its cooperative
share for these large values of .

V. SCHEDULING UNDER NONCOOPERATION:
GAME-THEORETIC STUDY

In this section, the BS knows about noncooperative behavior
of mobiles and is considered as an additional player. We thus
have an player game.

A. BS Scheduling Policies of Section IV: Game G2

In contrast to Section IV, the BS knows that the mobiles
are noncooperative. The resulting game is a one-shot concave
game: The utility (7) of mobile is linear in its policy ,
while that of the BS (8) is continuous and concave in its
policy . From results in [22], this game always has an NE3

that satisfies

3Note that when adding further concave constraints, the game remains con-
cave even if the constraints are coupled [22]. We thus obtain equilibrium also
for constrained versions of the game. An example of such constraints is: the
(possible weighted) sum of throughputs is bounded by a constant.
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As discussed, next game G2 has a “Babbling” equilibrium, but
does not have a TRE.
1) G2 Has Babbling NE: We will now show that this game

has a Nash equilibrium where the BS neglects the signals from
the noncooperative users. Define a scheduling policy that de-
cides only based on the averaged utilities, i.e.,

(16)

Let for every and let
. Let be the policy that always signals the

state with highest utility, i.e., for all
and for all . Then, for any and

and hence from (16), is the best response of under .
One can easily see that the utilities does not depend upon
, and we have the following lemma.
Lemma 6: The pair forms an NE for game G2.
The NE is one where BS ignores the signals from

the noncooperative mobiles and is similar in sense to the Bab-
bling equilibrium defined in the context of signaling games [25].
This equilibrium is better than the equilibrium of game G1 be-
cause the noncooperative mobiles cannot grab the channel via
strategic signaling. However, the BS completely neglects the
signals from noncooperative mobiles, and the multiuser diver-
sity is lost.
2) G2 Has No TRE: We now examine the existence of the

desired TRE. The case of efficient schedulingwas studied
in [15], where G2 was modeled by a signaling game. It was
shown that the game G2 has only Babbling equilibria as NE
and hence does not have a TRE. We will now consider the case

and obtain the following.
Lemma 4: The game G2 has no TRE.
Proof: Please refer to Appendix C.

Thus, the BS, even when aware of the noncooperation, is not
successful in eliciting truthful signals. In the following, we con-
struct more intelligent policies that induce a TRE.

B. Robust BS Policies: Game G3 has TRE

The BS can estimate signal statistics after sufficient obser-
vation of the mobile signals. We use to build robust policies
for BS that give us the desired TRE. The BS now makes two
decisions: 1) a scheduling decision as before, which identi-
fies the mobile that would be scheduled in the current time-slot;
2) an allocation decision, which identifies the portion of

that will be allocated. Via this allocation decision , the
BS further controls the average utility assigned to a mobile
so as to ensure that this average does not exceed its coopera-
tive share, . The policy of BS now is a mapping that takes
every ordered pair of signal and signal statistics to an or-
dered pair . All the utilities will
change appropriately to include . For example

A profile is an NE for the game G3 if

for all

(17)

When the BS knows the signal statistics, , it can estimate
the ASA utilities for any scheduling policy and for any mobile
profile because

where we have abused notation to show that depends on
only through . The expectation in is with respect to . The
BS can also estimate the mobiles’ cooperative shares of
(11) using its prior knowledge of the channel statistics. We now
propose a robust policy at the BS that uses both these average
utilities. The key idea is to design a policy at the BS that does
not allow the (average) utility of any mobile to be greater
than .
When a noncooperative mobile uses a signaling strategy to

improve its ATA utility , even its ASA utility im-
proves. For each mobile , the BS can estimate ASA utility

and sense the increase in it with respect to the cooper-
ative share, . The BS can ensure none of the mobiles is al-
located more than its corresponding cooperative share by allo-
cating only a fraction and not the total signaled utility at every
sample. The fraction to be allocated is set based on the present
excess over the cooperative share

(18)

for some large value of . Hence, to ensure that none of the
mobiles get more ASA utility than its cooperative share, BS
chooses to satisfy the following:

(19)
Equation (19) is satisfied by every fixed point of the mapping

, where with

for all

and one is interested in the fixed points of the positive orthant.
Lemma 5:
(i) The function has a fixed point in the positive
orthant for every , , and .

(ii) For any -fair scheduler given by (2) and for truthful
signaling , is the unique fixed point of .

(iii) At any fixed point of , and for any profiles

for all

Proof: Please see Appendix C.
By the above lemma, the function has at least one fixed

point in positive orthant for every . Consider one such
fixed point and define allocation control using (18) wherein

is replaced by . With this allocation, the ASA utility
of mobile would indeed be , and its ATA utility equals

(20)

Note that , and hence by (19) and Lemma 5(iii)
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In other words, with the allocation (18) at BS, no mobile can
gain more than its cooperative share for any pair

Furthermore, if BS uses any -fair scheduler of (2), then
by Lemma 5(ii), is the unique fixed point under truthful
strategies ( ), and then it is easy to check using (19) and (20)
and that

for all

We have thus proved the following result.
Theorem 1: If BS knows cooperative shares and the

signal statistics , the player strategic game has

as an NE,4 i.e., G3 has a TRE.
Until now, we looked at policies that were defined via some

fixed points. One needs a method to calculate these fixed points
and thereby practically implement the policies. In the coming
sections, we will turn our attention to practical and iterative
-fair scheduling algorithms, which achieve precisely this com-
putational goal. We begin by first studying -FSA proposed and
analyzed in [18]. It is already known that this algorithm con-
verges to cooperative shares when all the mobiles are coopera-
tive (see [18] and the same is also summarized in Section VI).
We will analyze under noncooperation, utilizing the results al-
ready derived in this paper, and show that FSA fails under
cooperation (in Section VI) and then propose a robust modifi-
cation of it (in Section VII).

VI. FAIR SCHEDULER ALGORITHM ( -FSA)

From this section onwards, the channel states as well as
the signaled states (the states reported by the mobiles) are
continuous random variables with stationary rates across time,

, for
all , satisfying the assumptions of Appendix D.5

This section and Section VII use various types of rates,
and hence the notations become complicated. Thus, a table
(Table III) of notations specific to these two sections is given in
Appendix D, where all the rate notations are listed at one place.
By assumption A.3 of Appendix D, the rates are integrable,

and hence the mapping

with

has a fixed point (by Brouwer’s fixed point theorem),
satisfies (3), and hence is an -fair

4An -NE is a strategy profile that is within an additive of an NE, i.e.,
for all .

5For understanding the asymptotic limits of the dynamic algorithms of this
section, we will need the results corresponding to the static settings of Section II.
However, all the results of Section II correspond to discrete channel states and
rates. We assume that for the more general case under study in this section, an
-fair solution of the form (3) exists and that the corresponding shares are
unique as in Lemma 1. Sufficient conditions for this to occur are under study.
This result is required for showing that -FSA asymptotically converges to the
cooperative shares (i.e., limits maximize the -fair criterion) for all . In [18],
Theorem 2.3 does this job, at least approximately, for : Any other assign-
ment rule results in a limit with less than that corresponding to
scheduler of -FSA (21). The simulations of this section further support
our assumption.

solution. Thus, for continuous rates, we always have fixed
point -fair solution (3). We outlined an algorithm to imple-
ment -fair scheduler (3) in Remark II-3 following Lemma
1. The -FSA [18], a stochastic approximation-based fair
scheduling algorithm, exactly follows this outline. Let

and . The
algorithm is

(21)

where are small positive constants added for stability and
for some . While making decisions

, if there are more than one users attaining maximum,
one of the maximizers is chosen by the BS randomly. In
[18, Theorem 2.2], the authors show that of (21), with

, converges weakly to the unique limit point that
satisfies for all . A close look at this
limit point (when we neglect ) reveals that is
the -fair scheduler (3) and that are the unique cooperative
shares, . Thus, -FSA weakly converges to
the unique point (cooperative shares) that maximizes the -fair
criterion (1).

A. Convergence of -FSA in the Presence of Noncooperation

The (unaware) -FSA uses signaled rates

and , in place of the corresponding true
quantities , to make decisions as in Section IV. Here, the al-
gorithms take the form

The signaled rates reflect the statistics (instead of ). Weak
convergence to an attractor can be shown (as in [18]), however
the limit is a different attractor, corresponding to . It is very
easy to see as in Section IV that when mobiles are noncoopera-
tive with profile , -FSA converges weakly to unique maximum
ASA rates with , the best response to given
by (14).

B. Failure of -FSA in Presence of Noncooperation

As noted above, the -FSA (21) converges to the maximum
ASA utility (under ) that need not equal the ATA utility in
the presence of noncooperation. However, to understand the be-
havior of (21) in the presence of noncooperation, one needs to
study the asymptotic true utilities gained by the mobiles under
(21). Toward this, we consider a second iteration running in par-
allel with (21), wherein the instantaneous signaled utility
is replaced by the true instantaneous utility gained by the mo-
bile , i.e.,

(22)

As in [18], one can show that converges weakly to the ATA
utility , under .
Thus, the asymptotic limits of -FSA equal the maximum

ASA utilities of Section IV while the true utility adaptation (22)
converges to the corresponding ATA utilities. These time limits
will thus have all the properties of Section IV: The -FSA will
fail for small and will be robust for large as discussed in
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Fig. 3. -FSA: ASA and corresponding ATA shares versus . Mobile 1 is non-
cooperative when .

Section IV. The only difference here is that the channel rates
are continuous.

C. Numerical Examples

In this section, via some numerical examples, we further illus-
trate that -FSA fails under noncooperation. Two asymmetric
users are considered in Fig. 3. Let be a Rayleigh random
variable with density . Channel state of
User 1 is conditional Rayleigh distributed, i.e.,

User 2 has a more diverse channel

The utilities are the achievable rates .
User 1 is noncooperative and utilizes a signaling strategy map-
ping . The utility indicated by the signals from
User 1 equals: with .
We plot the limit of the -FSA, the limits of true utility adap-
tation (22) as a function6 of . For User 2, who is cooperative,
we plot only one curve as the ATA and ASA utilities coincide.
We also plot the cooperative shares obtained by the limits of
-FSA, i.e., the limits with .7 We observe that the coop-
erative shares tend toward equal values as . User 1 is
successful in gaining more (ATA) utility in comparison to its
cooperative share for all less than 0.65. Beyond 0.65, User 1
actually loses, and the loss increases as increases. The obser-
vations are similar to that in themotivating example and indicate
that -FSA is robust only for large .
In Table I, we consider a symmetric example. We consider

the discrete channels of Section IV. This example is consid-
ered in order to demonstrate that -FSA works/fails as already
explained in this section even for the examples with discrete
channel states. We consider two users, both of them having two

6The authors in [18] analyze these algorithms only for . However,
numerous examples suggest that they work for all values of . That is, when all
mobiles are cooperative, the FSA (for any ) converges to the unique shares
that maximize the objective function (4).
7The cooperative shares can be estimated at the BS, a priori, using -FSA

(24), using the channel statistics and Monto Carlo simulations. A sequence of
channel-state realizations are produced by the BS according to the given channel
statistics, and the same is used as the signal from the mobiles (in other words,
when ) and the iteration (24) is run for sufficient iterations so as to ensure
convergence. From [18], when started from a faraway point, it needs around
10 000 iterations, while lesser iterations would be required for a more accurate
initial estimate of cooperative shares.

TABLE I
SYMMETRIC EXAMPLE IN WHICH -FSA FAILS AGAINST NONCOOPERATION

channel states with utilities , occurring with prob-
abilities , , respectively. In this example, we
work only with , i.e., the proportional fair scheduler. Both
users have equal cooperative share, .
Hence, when both the mobiles report the channel states truth-
fully, under FSA scheduler, the asymptotic throughputs of
both the mobiles converge to 1.51, i.e.,
for , 2. Hence, maximum proportionally fair BS (asymp-
totic) utility is .
Suppose now that User 1 becomes noncooperative with

. We see that the User 1 is successful in grabbing
the channel more often and increasing its utility in comparison
to its cooperative share. The greater the inflationary signaling
(the larger the value of ), the more he gains (look at the
asymptotic throughput in the second column in Table I).
He gains up to 12.5% more than its cooperative share. The
cooperative user, User 2, loses due to the presence of the
noncooperative mobile resulting in unfair allocations.

VII. ROBUST -FAIR ALGORITHMS: ROBUST FAIR SA

We saw that -FSA fails in the presence of noncooper-
ative users. Hence, we propose a robustification of -FSA
against noncooperation using the policies of Section V-B.
In Section V-B, we proposed BS policies robust against
noncooperation, and in this section we propose stochastic
approximation-based algorithms to converge toward the ASA
utilities of the policies given by (20). The policy of Section V-B
requires knowledge of signal statistics , which has to be
estimated. The methods described in this section combine
estimation and control using stochastic approximation-based
methods, as done by -FSA. We will show robustness of these
policies by using appropriate game-theoretic tools as well as
the results from the theory of stochastic approximation.

A. Robust Policy 1

We now propose a robustification of (21) against noncooper-
ation in the following update algorithm:

(23)

(24)

(25)

where the decisions are same as those in -FSA (21),
but only the allocations are made ro-
bust. As in the case of -FSA, to understand the behavior of this
algorithm, we need the following iteration that estimates the true
utilities gained by the mobiles:

(26)
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1) Analysis: We analyze the robustness of the proposed al-
gorithm using game-theoretical tools. Fix any . We consider
an player game with utilities defined by

for all

We analyze the limits of (26) using ODE approximation
methods (e.g., [11] and [18]). As a first step, we obtain the
following ODE approximation result.
Theorem 2: Assume that algorithms (23)–(26) satisfy as-

sumptions A.1–A.3 of Appendix D. For any initial condition,
converges weakly to the set of limit points of the

solution of the ODE (for all )

(27)

(28)

These conclusions hold whenever , and for
some , .
Remarks About the Proof and the Assumptions: This theorem

can be proved exactly in the same way as is done for FSA
by Kushner et al. [18, Theorem 2.1]. The required assumptions
A.1–A.3 are also very similar to those in [18]; the true channel
rates and the signaled rates should satisfy the con-
ditions of [18]. Also by Lemma 7, the right-hand sides (RHSs)
of ODEs (27) and (28) are Lipschitz, and hence the ODEs have
unique solution.
Hence, one can upper-bound utilities by upper-

bounding all the attractors of the ODE (28). Any attractor of
the ODE (27) is a zero of its right-hand side and hence is a fixed
point of the map of Lemma 5, and thus by Lemma 5(iii),

. Furthermore, any attractor of ODE (28)
satisfies leading to . Thus, for any
mobile strategy profile

(29)

where means the limit converges in distribution. Thus, none
of the users, no matter what strategy they use or what strategies
the others use, can gain more than .
Under , is the only zero of RHSs

of the ODEs (27) and (28), as can be shown using fixed point
analysis [see Lemma 5(ii) and the logic just before Theorem 1 in
Section V-B]. Note here that is the -fair scheduler

satisfying (3). Thus, is the only possible attractor
of both the ODEs under . Thus

for all under (30)

From (29) and , (30), the robust policy (24) at BS together with
the truth-revealing policy of users forms an -NE.

B. Robust Policy 2

The policies of Section VII-A, Robust Policy 1, will not allow
the ATA utility of any user to go above the cooperative share.
Nevertheless, when a user is noncooperative, these policies may
still result in a loss for the cooperative users: 1) because of the
unchanged scheduling decision, the noncooperative user can
still grab the channel from other users; 2) however, the non-
cooperative user does not gain because of the robust alloca-
tion policies (18). To avoid this problem, we may robustify not

Fig. 4. Robust Policy 1: ATA utilities versus . Mobile 1 is noncooperative
with .

only the allocations, but also the scheduling decision, bymaking
decisions using the controlled allocations in place of the sig-
naled utilities

(31)

The analysis of this policy would be similar to Policy 1. We
need to change the assumptions of Appendix D appropriately to
obtain the ODE approximation result (equivalent of Theorem
2). In particular, we need to replace the decisions
with in all the places. The analysis of this policy,
hence after, is considerably more difficult. While all the steps
can be carried out as done for Policy 1 including Lemma 7, the
uniqueness of the attractor under truthful strategies remains
an open question. However, numerical evidence (Section VII-C)
suggests that Policy 2 is also robust. The examples also show
that these policies outperform Robust Policy 1 in many ways,
while Robust Policy 1 is simpler to implement.

C. Numerical Examples

We continue with the example of Fig. 3 (for which -FSA
failed). We now use Robust Policy 1 in place of -FSA in Fig. 4.
We set . We plot only the ATA utilities for both values
of , . We do not plot the ASA utilities in this
figure to avoid clutter. However, these utilities for all the cases
studied are either close to or less than the cooperative shares

, as proved by theory. We see that this policy is indeed ro-
bust: 1) the time limits of (which correspond to ASA
utilities) are either close to or less than the cooperative shares;
2) when all the mobiles are cooperative, both the ASA as well as
ATA utilities are close to the cooperative shares for all the mo-
biles (in Fig. 4, we only plot the cooperative shares); 3) the time
limit of the asymptotic true (ATA) utilities, unlike in the case
of -FSA (see the light curves in Fig. 3), are less than the co-
operative shares for the noncooperative mobile (light curves in
Fig. 4). This illustrates that the noncooperative mobiles does not
gain, but actually loses, because of noncooperation. However,
the cooperative mobile (mobile 2 in Fig. 4, see the curves with
circles) loses to a greater extent because of the other mobile’s
noncooperation. Robust Policy 1 only ensures that the mobile 1
never gains because of noncooperation, but could not prevent
the cooperative mobile 2 from losing. Robust Policy 2 solves
exactly this issue.
In Figs. 5 and 6, we compare the two robust policies. Here
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Fig. 5. Robust Policy 1: ATA utilities of the mobiles versus . Mobile 1 is
noncooperative when . The ATA utilities at and cooperative shares
equal each other.

Fig. 6. Robust Policy 2: ATA utilities of the mobiles versus . Mobile 1 is
noncooperative when . The ATA utilities at and cooperative shares
equal each other.

and . Mobile 1, can be noncoop-
erative using the signaled utilities

with . In these figures, we plot only the ATA utilities
at and at . The ATA utilities at are very
close to the cooperative shares, and hence cooperative shares
are not shown separately. The ASA utilities are again omitted
for improving clarity; they are either close to or less than the
corresponding cooperative shares as is suggested by theory. We
see from the figures that both the policies are robust. Even with
high values of (which indicates a large amount of non-
cooperation), both the policies do not allow the ATA utilities to
go beyond the cooperative shares. However, the Policy 2 is way
better than the Policy 1: 1) the noncooperativemobile (mobile 1)
is more severely punished in Policy 2, and its ATA utility is sig-
nificantly less than the cooperative share (Fig. 6, see curves
without circles), but with Policy 1, it is slightly less than
(Fig. 5); 2) the cooperative mobile 2 loses because of noncoop-
eration from the mobile 1 to a much greater extent in Policy 1
(compare the curves with circles in Figs. 5 and 6). This is in
line with the extra robustification built into decision making by
Policy 2. When BS uses Policy 1, the noncooperative mobile
grabs the channel more often (almost always with large values
of ). It, however, does not gain much because of the ro-
bust allocation (18). When the mobile is aware that he cannot
gain from being noncooperative, he prefers to signal truthfully,
unless the intention is to jam the other mobile (in which case
the BS needs to use Policy 2). However, Policy 1 is easier to

TABLE II
ROBUST POLICY 1 AGAINST NONCOOPERATION EXAMPLE OF TABLE I

implement than the Policy 2 because of simpler decisions and
may have faster convergence.
In Table II, we continue with the symmetric example of

Table I wherein FSA fails. We see once again that (even
with discrete and symmetric conditions) Policy 1 is robust
against noncooperation; it does not allow the noncooperative
user to improve his asymptotic throughput.

VIII. SUMMARY

We studied centralized downlink transmissions in a cellular
network in the presence of noncooperative mobiles. Using the
-fair scheduler, the BS has to assign the slot to one of the many
mobiles based on truthful information from mobiles about their
time-varying channel gains. A noncooperative mobile may mis-
represent its signal to the BS so as to maximize his throughput.
We modeled a noncooperative mobile as a rational player who
wishes to maximize his throughput. For this game, we iden-
tified several scenarios related to the awareness of BS. When
the BS is unaware of this noncooperative behavior, we modeled
this game as a noncooperative game with the mobiles alone as
players. We identified that the presence of noncooperative users
results in a bias in the channel assignment for small values of
. As increases, an -fair scheduler becomes more and more
robust to noncooperation irrespective of the awareness of the
BS, and a max-min fair scheduler is always robust. When the
BS is aware of the noncooperative mobiles, we characterized
a Babbling equilibrium that is obtained when both the BS and
the noncooperative players make no use of the signaling oppor-
tunities. This game has no TRE. Using additional knowledge
of the statistics of the signals observed at the BS, we built new
robust policies to elicit truthful signals from mobiles, and we
achieved a Truth Revealing Equilibrium. We then studied the
popular iterative and fair scheduling algorithm (which we called
-FSA) analyzed by Kushner and Whiting in [18]. We showed
that -FSA fails under noncooperation. Finally, we proposed
iterative robust fair sharing to robustify the -FSA in the pres-
ence of noncooperation.

APPENDIX A
REMARKS ON CHOICE OF UTILITY

Even if a mobile signals more than its true value and the BS
attempts to transmit at that higher transmitted rate, the actual
rate at which the transmission takes place will still be .
This is reasonable given the following observations. The re-
ported channel is usually subject to estimation errors and delays,
an aspect that we do not consider explicitly in this paper. To ad-
dress this issue, the BS employs a rateless code, i.e., starts at an
aggressive modulation and coding rate, gets feedback from the
mobile after each transmission, and stops as soon as a sufficient
number of redundant bits are received to meet the decoding re-
quirements. This incremental redundancy technique supported
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by hybrid ARQ is already implemented in the aforementioned
standards (3GPP HSDPA and 1xEV-DO). Then, a rate close to
the true utility may be achieved.

APPENDIX B
PROOF OF LEMMA 1

Proof of Lemma 1: Since is a concave function

(32)
From (3), maximizes the function

over , and hence we have

This along with (32) proves that is a global maximizer of the
objective function in (2) over domain and hence is a -fair
solution (2).
Most of the times there may not be a unique global optimizer

for the -fair objective function. However, uniqueness of
follows from strict concavity of the mapping

and the fact that is compact and convex. From the uniqueness
and Lemma 6 below, the last statement follows.
Lemma 6: Consider a BS policy that is inefficient in the fol-

lowing sense.Without loss of generality, consider the mobile in-
dexed by 1. If there exists an and
such that

when
(33)

then one can construct a better BS policy that yields
for all and . One can construct

a better policy even if there exists an and
such that

when

Proof: We first construct a better policy for the condition
(33). Define a new policy : for all , let

when or

We will pickup constants such that for all

and such that the constructed policy satisfies the require-
ments of the lemma. First, we note that the sum
needs to be zero for both , i.e., . This is
required because the newly constructed policy should satisfy

for all . Let represent the
component of corresponding to the th user. Then, since

to make , we need to set for all

and hence

Thus

if we set and because of the following.
• Because , we need and thus need
at least one such that . This
is always possible under the hypothesis of the lemma, as
otherwise

and hence contradicts the hypothesis.
• , and hence we need , which is
also true because of the hypothesis.

The above two reasons are required to ensure the basic neces-
sary of the policy: .
The maximum value of is easily seen to be

The last condition can also be taken care in a similar way. For
example, if there exists an and
such that

when

then for all , there exists
at least one for which .
Then, one can chose

and rest 0 with

APPENDIX C
PROOFS OF LEMMAS 2, 4, AND 5

Proof of Lemma 2:: As in Lemma 1, for any , if there exists
a that satisfies:
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then it maximizes (14). Define the following for mobile 1:

if
if and
if

where is the maximum satisfying N.2. Define

Mobile 1 can deviate unilaterally from the truth-revealing
strategy using and increase its truth-revealing utility to
a higher utility , whenever the
following conditions hold:

with

with for all . This is because with
the above choice of , the mobile 1, as in the cooperative case,
will grab the channel with signal because of the
following:
• the corresponding utility

• for every , the function is decreasing in its argu-
ment, and hence

for all

with representing the new lower
utility of the mobile 2, reduced because of the noncooper-
ation of the mobile 1, by an amount not more than .
Proof of Lemma 4: If the player game were to have

a TRE, the corresponding (equilibrium) strategy of the BS, by
definition of the NE, should be the best response to mobiles’
truthful strategies and hence will maximize

. Hence, the best response for truth-revealing strategy
profile indeed equals one of the maximizers of Lemma 1,
which satisfies the efficiency property (5).
Let be any maximizer of Lemma 1. The strategy profile

does not form an NE because: Let be any mobile
with nonzero cooperative share, and let be its channel value
with largest utility, i.e., let . The
mobile by changing its policy from truthful signals to

for all increases its ATA

utilities as by (5) for any and for any ,
, and hence

Strict inequality results in the last line for all , as all the
mobiles obtain nonzero utility under an -fair scheduler. Thus,
the mobile can improve its utility by unilaterally moving
away from , contradicting the definition of NE.

Proof of Lemma 5:
(i) With representing upper bound on

for all

Thus, the map is bounded and
continuous for almost all values of and all , and hence by
bounded convergence theorem, the map is continuous in the
positive orthant. Thus, by Brouwer fixed point theorem,8 there
exists a fixed point for .
(ii) At any -fair scheduler of (2) and with , it

is easy to check that is a fixed point (note ) of .
Also, if is any other fixed point (note )

and hence for all

so that . If for some , then the indicator
for all , and then , which is a

contradiction. Hence, with , has unique fixed point
.
(iii) If is any fixed point of , irrespective of

APPENDIX D
ASSUMPTIONS FOR STOCHASTIC APPROXIMATION-BASED

ALGORITHMS

We first reintroduce some of the notations. Table III lists and
describes all the various rates used in Sections VI and VII.

8Brouwer fixed point theorem: Every continuous function from a closed
ball of a Euclidean space to itself has a fixed point, i.e., an that satisfies

.



KAVITHA et al.: FAIR SCHEDULING IN CELLULAR SYSTEMS IN PRESENCE OF NONCOOPERATIVE MOBILES 593

TABLE III
TABLE OF NOTATIONS FOR DIFFERENT RATES

The last column of this table provides the corresponding vector
symbol for the vector of components.
We now state the assumptions required for Sections VI and

VII.

A.1) Let denote the past . For each
( represents conditional expectation w.r.t. )

are continuous in . Here, is considered fixed.
Let be arbitrary. The continuity is uniform in
and in in the set .

A.2) The sequence is stationary. Define the
following stationary expectations:

In the above, is considered fixed. Also

in the sense of probability. There are small positive
and such that for every

if

else

A.3) True and signaled rates are defined on
some compact set and have bounded joint density.

Remark VIII-1: The assumption A.1 can be ensured as in
Lemma 7 given the assumption A.3.

APPENDIX E
PROOF OF LEMMA 7

Lemma 7: Define the following functions9:

Then, the functions , are continuously differentiable,
while the functions , are locally Lipschitz, both w.r.t.
for every .
Proof: The result is implied for both the robust policies if

we prove the first statement for , . By independence of
channel states across the mobiles

Note in the definition of the sets , the flag is
dropped, as for the samples with the flag equal to 0, integrand
would anyway be zero. The first part of the lemma is proved by
BCT if we show that the functions and

are continuously differentiable (w.r.t. ) with uni-
formly bounded derivatives for almost all . This is immedi-
ately evident for . The same holds for
by assumption A.3 as

(34)

for , where is the (bounded) density of signaled
rates . Note in the above that the continuous derivative
will also be uniformly bounded for all coming from a compact
set because of boundedness of , i.e., of .
Easy to see that .

Hence, with representing the upper bound on function

The lemma follows from the uniform boundedness of the
derivative in (34) and the mean value theorem.
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