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1. Introduction

As the users population accessing Internet services grows in size and dispersion, it is
necessary to improve performance and scalability by deploying multiple, distributed
server sites. Distributing services has the benefit of reducing access latency, and
improving service scalability by distributing the load among several sites. One
important issue in such a scenario is how the user chooses the appropriate server. A
similar problem occurs in the context of routing where the user has to select one of a
few parallel links. For instance, many enterprise networks are connected to multiple
Internet service providers (ISPs) for redundant connectivity, and backbones often
have multiple parallel trunks. Users are likely to behave “selfishly” in such cases,
that is, each user makes decisions so as to optimize its own performance, without
coordination with the other users. Basically, each user would like to either maximize
the resources allocated to it, or, alternatively, minimize its cost. Load balancing and
other resource allocation problems are prime candidates for such “selfish” behavior.

A natural framework to analyze this class of problems is that of noncooperative
games, and an appropriate solution concept is that of Nash equilibrium [Nash 1951].
Users’ strategy is at a Nash equilibrium if no user can gain by unilaterally deviating
from its own policy. An interesting class of noncooperative games, which is related
to load balancing, is congestion games [Rosenthal 1973] and its equivalent model
of potential games [Monderer and Shapley 1996]. In a potential game there is
a potential function which maps the current state to a real number (in the load
balancing scenario a state would include assignment of jobs to machines). We now
consider deviations of a single player (job) and compare the change in the deviating
player’s utility (load) to change in the potential function. In an exact potential game
the changes are identical. In a weighted potential game the changes are related by
a factor that depends only on the player. In an ordinal potential game the changes
are in the same direction, while in a generalized potential game an increase in a
player’s utility implies an increase in the potential function (but not vice versa).
Almost by definition, every potential game has a pure (deterministic) equilibrium,
and by iteratively performing improvements of the player we can reach such an
equilibrium. In this article we focus on the load balancing problem and relate it to
potential games. Although our model is a simplification of the Internet model, it
still captures several aspects of it and can represent simpler networks, as pointed
out in Koutsoupias and Papadimitriou [1999], Mavronicolas and Spirakis [2001],
Papadimitriou [2001], and Czumaj and Vocking [2002].

Traditionally in computer science, research has been focused on finding a global
optimum. With emerging interest in computational issues in game theory, the
coordination ratio [Koutsoupias and Papadimitriou 1999; Papadimitriou 2001]
has received considerable attention in relation to load balancing [Koutsoupias and
Papadimitriou 1999; Mavronicolas and Spirakis 2001; Czumaj and Vocking 2002]
and other problems such as routing and facility location [Czumaj et al. 2002;
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Fotakis et al. 2002; Roughgarden and Tardos 2002; Fotakis et al. 2004; Awerbuch
et al. 2005]. The coordination ratio is the ratio between the worst-possible Nash
equilibrium (the one with maximum social cost) and the social optimum (an optimal
solution with minimal social cost). One motivation is to show that the gap between
a Nash equilibrium and the optimal solution is in some cases not significant, thus
good performance can be achieved even without centralized control.

In this work we are concerned with the time it takes for the system to converge to
a Nash equilibrium, rather than the quality of the resulting allocation. The question
of convergence to a Nash equilibrium has received significant attention in the game
theory literature (see Fudenberg and Levine [1998]). Our approach is different
from most of this line of research in a few crucial aspects. First, we are interested
in quantitative bounds, rather than showing a convergence in the limit. Second, we
consider games with many players (jobs) and actions (machines) and study their
asymptotic behavior. Third, we limit ourselves in this work to a subclass of games,
arising from load balancing, for which there always exists a pure Nash equilibrium,
and thus we can allow ourselves to study only deterministic policies.

Our Model. This article deals with load balancing (see Azar [1998]). Jobs (play-
ers) are allowed to select a machine to minimize their own cost. The cost that a job
observes from the use of a machine is determined by the load on that machine. We
consider weighted load functions where each job has a corresponding weight and
the load on a machine is sum of weights of the jobs running on it. Until a Nash
equilibrium is reached, at least one job can benefit from changing its machine. In
our model, similarly to the elementary stepwise system (ESWS) (see Orda et al.
[1993]), at every time step only one job is allowed to move, and a centralized con-
troller decides which job will move in the current time step. This model measures
both the sequential complexity of reaching pure Nash equilibrium, and the com-
plexity of distributed algorithms converging to Nash equilibrium in which only one
movement is allowed at each time step.

In our notation a strategy is the algorithm used by the centralized controller for
selecting which of the competing jobs will move. Due to the selfish nature of jobs,
we assume that when a job migrates, its observed load is strictly reduced, which
we refer to as an improvement policy. We also consider the well-known case of
best-reply policy, where each job moves to a machine in which its observed load is
minimal.

Our Results. We assume that there are n jobs and m machines. Let K be the
number of different weights, W be the sum of weights of all the jobs, and wmax be
the maximum weight assigned to any job (we normalize the minimal weight to 1).

For the general case of unrelated machines we show that the system always con-
verges to a Nash equilibrium. We do so by introducing an order between different
configurations and showing that when a job migrates, we move to a “lower” con-
figuration in the order. This shows that this case is a generalized ordinal potential
game. This implies that we never reach the same configuration twice, and therefore
bounding the number of configurations bounds the convergence time. Bounding
the number of configurations by min{[O( n

K m + 1)]K m, mn} derives a general upper
bound. Using a potential base argument we derive a bound of O(4W ) for integer
weights, where W is the worst case sum of the weights of jobs. For the specific strat-
egy that first selects jobs from the most loaded machine, we can show an improved
bound of O(mW + 4W/m+wmax ).
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In the simple case of identical machines and unrestricted assignments, we show
that if the controller moves the minimum weight job, the convergence may take an
exponential number of steps. Specifically, the number of steps is at least

( n
K

)K

2(K !)
≥

( n
K 2

)K

for K = m − 1. In contrast, we show that if the controller moves the maximum
weight job and the jobs follow the best-reply policy, a Nash equilibrium is reached
in at most n steps. This shows the importance of selecting the “right” scheduling
strategy. Moreover, we show that selecting the minimal weight job is “almost” the
worst case for identical machines, by demonstrating that any strategy converges in
( n

K + 1)K time steps. Moreover, we show that any strategy converges in O(W + n)
steps for integer weights. For random and FIFO strategies we derive an O(n2) bound
on convergence time.

We show that restricted assignment with related machines is a weighted potential
game, and in the case that all jobs have the same weight it is an exact potential game.
For this setting we bound by O(W 2S2

max/ε) the convergence time to ε-Nash, where
no job can benefit more than ε from unilaterally migrating to another machine and
Smax is the maximal speed. Using a strategy that first schedules jobs from the most
loaded machine, we can derive an improved convergence bound. Note that in our
setting there always exists an εmin such that for any ε < εmin we have that any ε-Nash
equilibrium is a Nash equilibrium. For example, in the case of identical machines
with integer weights we have εmin = 1.

For K integer weights, we are able to derive an interesting connection between
W and K for the case of identical and related machines. We show that for any set V
of K integer weights there is an equivalent set V ′ of K integer weights such that the
maximum weight in V ′ is at most O(K (cSmaxn)4K ) for some positive constant c. The
equivalence guarantees that the relative cost of different machines is maintained in
all configurations (in addition, we need never compute V ′, and it is only used in
the convergence analysis). The equivalence implies that W = O(K n(cSmaxn)4K ).
Thus, all bounds that depend on W can depend on O(K n(cSmaxn)4K ).

Related Work. Milchtaich [1996] describes a class of noncooperative games
which is related to load balancing (in order to make the relations between models
clearer we use the load balancing terminology to describe his work). The jobs
(players) share a common set of machines (strategies). The cost of a job when
selecting a particular machine depends only on the total number of jobs mapped
to that machine (implicitly, all weights are identical). However, each job has a
different cost function for each machine; this is in contrast to the load balancing
model where the cost of all jobs that map to the same machine is identical. He shows
that these games always possess at least one pure (deterministic) Nash equilibrium
and there exists a best-reply improvement strategy that converges in polynomial
time. However, for the weighted version of these games there are cases where a
pure Nash equilibrium does not exist. In contrast, we show that any improvement
policy converges to a pure Nash equilibrium in the load balancing setting.

Our model is related to the makespan minimization problem, since job moves can
be viewed as a sequence of local improvements. The analysis of the approximation
ratio of the local optima obtained by iterative improvement appears in Brucker et al.
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[1996, 1997] and Schuurman and Vredeveld [2001]. The approximation ratio of
a jump (one job moves at-a-time) iterative improvement has been studied in Finn
and Horowitz [1979]. In Brucker et al. [1997] it was shown that for two identical
machines this heuristic requires at most n2 iterations, which immediately translates
to an n2 upper bound for two identical machines with a general weight setting
in our model. In Schuurman and Vredeveld [2001] the authors observe that the
improvement strategy that moves the maximum weight job converges in n steps.

Goldberg [2004] studied a randomized model in which each user can select a
random delay over continuous time. Continuous time implies that only one user
tries to reroute at each specific time. In that model, rerouting succeeds only if the
user lowers its load. The work shows a simple randomized algorithm in which the
expected number of rerouting attempts, until convergence to a Nash equilibrium,
is polynomial in both the number of links m and users n.

Mirrokni and Vetta [2004] studied a model in which only one user is allowed to
move in each time step, but their main interest was not the equilibrium point but
the social value after a short best-response path, and therefore they were interested
in the convergence time to an approximate solution and to an exact solution, as are
we.

A Nashification algorithm is an algorithm which changes the system state from an
arbitrary state to Nash equilibrium without increasing the social cost. In Feldmann
et al. [2003] a Nashification algorithm in a load balancing setting was considered.
They studied the time it takes for a specific scheduler to Nashify a non-Nash equi-
librium state. They also provide an example where there can exists a sequence of
an exponential number of selfish improvements with respect to the number of ma-
chines to reach Nash equilibrium (this last result is similar to Theorem 5.5 in this
article and was derived independently at the same time).

Some interesting related learning models are stochastic fictitious play
[Fudenberg and Levine 1998], graphical games [Littman et al. 2002], and
large population games [Kearns and Mansour 2002]. The uniqueness of Nash
equilibrium in communication networks with selfish users has been investigated in
Orda et al. [1993]. An analysis of convergence to a Nash equilibrium in the limit
appears in Altman et al. [2001] and Boulogne et al. [2002].

Following the previous version of this work, the work of Even-Dar and Mansour
[2005] also studies convergence rate in the load balancing scenario. The major dif-
ference there is that they consider a model without a centralized unit and is simpler
in that it has only related machines and mainly unweighed jobs. A logarithmic
bound on the convergence time is derived there.

Article Organization. The rest of the article is organized as follows. In Section 2
we present our model. The analysis of unrelated, related, and identical machines
appears in Sections 3, 4 and 5, respectively. We conclude with Section 6. The
appendices contain the proofs.

2. Model Description

In our load balancing scenario there are m parallel machines and n independent
jobs. Each job selects exactly one machine.

—Machines model. We consider identical, related, and unrelated machines. We
denote by Si the speed of machine Mi . Let Smin and Smax denote the minimal
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and maximal speeds, respectively. Without loss of generality, we assume that
Smin = 1. For identical and unrelated machines we have Si = 1 for 1 ≤ i ≤ m.

—Jobs model. We consider both restricted and unrestricted assignments of jobs to
machines. In the unrestricted assignment case each job can select any machine,
while in the restricted assignment case each job J can only select a machine
from a predefined subset of machines, denoted by R(J ).

For a job J , we denote by wi (J ) > 0 the weight of J on machine Mi
(where i ∈ R(J )) and by M(J, t) the index of the machine on which J runs
at time t .1 When considering identical machines, each job J has a weight
w(J ) = wi (J ). We denote by W the maximal total weight of jobs, that is,
W = ∑n

i=1 max j∈R(Ji ){w j (Ji )} and by wmax = maxi max j∈R(Ji ){w j (Ji )} the
maximum weight of a job.

We consider the following weight settings: general weight setting: the weights
may be arbitrary positive real numbers; discrete weight setting: there are K
different weights 1 = w1 ≤ · · · ≤ w K = wmax; and integer weight setting: the
weights are positive integers.

—Load model. We denote by Bi (t) the set of jobs on machine Mi at time t . The
load of a machine Mi at time t is the sum of the weights of jobs that chose Mi ,
that is, Li (t) = ∑

J∈Bi (t) w(J ), and its normalized load is Ti (t) = Li (t)/Si . We
also define Lmax(t) = maxi {Li (t)} and Tmax(t) = maxi {Ti (t)}. The cost of job J
at time t is the normalized load on the machine M(J, t), namely, TM(J,t)(t). We
define the marginal load with respect to a job to be the load in the system when
this job is removed.

—System model. The system state consists of the current assignment of jobs to
machines. The system starts in an arbitrary state and each job has full knowledge
of the system state. A job wishes to migrate to another machine if and only if after
the migration, its cost is strictly reduced. Before migrating between machines,
a job needs to receive a grant from the centralized controller. The controller has
no influence on the selection of the target machine by a migrating job it just
gives the job permission to migrate. The preceding is known in the literature as
an elementary stepwise system (ESWS) (see Boulogne et al. [2002] and Orda
et al. [1993]). Essentially, the controller serves as a critical section control. The
execution is modeled as a sequence of steps and in each step one job changes its
machine. Notice that if all jobs are allowed to move simultaneously, the system
might oscillate and never reach a stable system state. This is evident in a simple
example where there are two machines and in each time step all jobs behave
selfishly and migrate to the least loaded machine.

Let A(t) be the set of jobs that may decrease the experienced load at time t
by migrating to another machine. When a migrating job selects a machine which
minimizes its cost (after the migration), we call it a best-reply policy. Otherwise,
we call it an improvement policy.

The system is said to reach a pure (or deterministic) Nash equilibrium if no job can
benefit from unilaterally migrating to another machine (note that by definition, the
only stable system states are Nash equilibria). The system is said to reach an ε-Nash

1We do not consider mixed strategies, namely, every job J at time t is mapped to a unique machine
M(J, t).
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equilibrium if no job can benefit more than ε from unilaterally migrating to another
machine. We study the number of time steps it takes to reach Nash equilibrium (or
ε-Nash equilibrium) for different strategies of ESWS job scheduling.

Scheduling strategies. We define a few natural strategies for the centralized
controller. The input at time t is always a set of jobs A(t) and the output is a job
J ∈ A(t) which will migrate at time t . The specific strategies that we consider
are:

—Random: Selects J ∈ A(t) with probability 1/|A(t)|;
—Max Weight Job: Selects J ∈ A(t) such that w(J ) = maxJ ′∈A(T ){w(J ′)};
—Min Weight Job: Selects J ∈ A(t) such that w(J ) = minJ ′∈A(T ){w(J ′)};
—FIFO: One can view this policy as using a queue where new jobs that would

like to migrate enter the end of the queue, and the job at the head of the queue
is selected to migrate. (Note that jobs in the queue might change their status and
then not like to migrate, in which case they leave the queue.) More formally, let
E(J ) be the smallest time t ′ such that J ∈ A(t ′′) for every t ′′ ∈ [t ′, t]. FIFO
selects J ∈ A(t) such that E(J ) = minJ ′∈A(T ){E(J ′)}; and

—Max Load Machine: Selects J ∈ A(t) such that TM(J,t) is maximal.

Potential games. Monderer and Shapley [1996] defined a few classes of potential
games. Common to the various classes of potential games is a potential function P
that maps a game state (system state in our notation) into the reals. We give here the
definition of the different classes of potential games, using our notations where the
players are the jobs, their utility function is their load, and their actions are selecting
a machine. Let st be the system state at time t and P be the potential function.

—Exact potential game: When a job migrates from Mi to M j at time t , then the
following holds: Tj (t + 1) − Ti (t) = P(st+1) − P(st ).

—Weighted potential game: When job J migrates from Mi to M j at time t , then the
following holds: Tj (t + 1) − Ti (t) = c(J )(P(st+1) − P(st )), for some constant
c(J ) which depends only on the job J .

—Ordinal potential game: When a job migrates from Mi to M j at time t , then the
following holds: Tj (t + 1) − Ti (t) < 0 ⇐⇒ P(st+1) − P(st ) < 0.

—Generalized ordinal potential game: When a job migrates from Mi to M j at time
t , then the following holds: Tj (t + 1) − Ti (t) < 0 =⇒ P(st+1) − P(st ) < 0.

The difference between a generalized ordinal potential game and an ordinal
potential game is in the case where the normalized load of the migrating job does
not change, namely, Tj (t + 1) = Ti (t). An ordinal potential requires that in such a
case we have P(st+1) = P(st ), while for a generalized ordinal potential this is not
a requirement, and any relationship can hold between P(st+1) and P(st ). For all
classes of potential games, it is easy to observe that any improvement policy would
converge to a pure equilibrium, since the potential function is bounded.

3. Unrelated Machines

In this section we consider unrelated machines case with restricted assignment. We
show that this case is a generalized ordinal potential game.
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To show convergence we use a lexicographic order similar to the one used by
Fotakis et al. [2002]. We define a sorted lexicographic order of the vectors describing
the machine loads as follows. Consider the sorted vector of the machine loads. One
vector is called “larger” than another if its first (after the common beginning of the
two vectors) load component is larger than the corresponding load component of
the second vector. Formally, given two load vectors �1 and �2, let s1 = sort(�1)
and s2 = sort(�2), where sort() returns a vector in sorted order. We define �1 	 �2
if s1 	 s2 using a lexicographic ordering, that is, s1[i] = s2[i] for i < k and
s1[k] > s2[k].

We demonstrate that the sorted lexicographic order of the load vector always de-
creases when a job migrates. We first observe that only two machines are influenced
by the migration of the job J at time t : Mi = M(J, t), where job J was before
the migration; and M j = M(J, t + 1), the machine to which J migrated. Further-
more, Li (t) > L j (t + 1), otherwise job J would not have migrated. Also note that
Li (t) > Li (t + 1), since job J has left Mi . Let L = max{Li (t + 1), L j (t + 1)}.
Since L < Li (t), one can show that the new machine loads vector is smaller in
sorted lexicographic order than the old machine loads vector. This is summarized
in the following claim.

CLAIM 3.1. The sorted lexicographic order of the machine loads vector de-
creases when a job migrates.

We can use the lexicographic order to define a potential function (since it defines
a complete order between system states). Therefore we establish the following.

COROLLARY 3.2. Load balancing of jobs with unrelated machines is a gener-
alized ordinal potential game.

Note that in the general model, a job that migrates without changing its load
might change the system state and, therefore, the potential function is not an ordinal
potential function.

General weights. In the general case, the number of different system config-
urations is at most mn , which derives the following corollary. Using the previous
argument, any improvement policy converges to a Nash equilibrium, and gives us
an upper bound on the convergence time equal to the number of different sorted
machine loads vectors (which is trivially bounded by the number of different system
configurations).

COROLLARY 3.3. For any ESWS strategy with an improvement policy, the sys-
tem of multiple unrelated machines with restricted assignment reaches a Nash
equilibrium in at most mn steps.

Discrete weights. For the discrete weight setting, the number of different
weights is K . Let ni be the number of jobs with weight wi . The number of different
configurations of jobs with weight wi is bounded by

(m+ni
m

)
. Multiplying the number

of configurations for the different weights bounds the number of different system
configurations. Since, by definition,

∑K
i=1 ni = n, we can derive the following.

COROLLARY 3.4. For any ESWS strategy with an improvement policy, the sys-
tem of multiple unrelated machines with restricted assignment under the discrete
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weight setting reaches a Nash equilibrium in at most

K∏
i=1

(
m + ni

m

)
≤

(
c

n
Km

+ c
)Km

steps for some constant c > 0.

Integer weights. To bound the convergence time for the integer weight set-
ting, we introduce a generalized ordinal potential function and demonstrate that
it decreases when a job migrates. We define the potential of the system at time t
as Pun(t) = ∑m

i=1 4Li (t). After job J migrates from Mi to M j , then we have that
Li (t) − 1 ≥ L j (t + 1), since J migrated. Also, since we have integer weights,
Li (t + 1) ≤ Li (t) − 1. Therefore, the reduction in the potential is at least

Pun(t) − Pun(t + 1) = 4Li (t) + 4L j (t) − [
4Li (t+1) + 4L j (t+1)] ≥ 4Li (t)/2 ≥ 2. (1)

This establishes that Pun is a generalized ordinal potential function.

THEOREM 3.5. For the system of multiple unrelated machines under the integer
weight setting, the function Pun(t) = ∑m

i=1 4Li (t) is a generalized ordinal potential
function.

Since in the initial configuration we have that Pun(0) ≤ 4W and when we termi-
nate we have Pun(T ) ≥ m, we derive the following theorem.

THEOREM 3.6. For any ESWS strategy with an improvement policy, the system
of multiple machines under the integer weight setting reaches a Nash equilibrium
in 4W /2 steps.

Next we show that this bound can be reduced to O(mW + m4W/m+wmax ) when
using the max load machine strategy.

THEOREM 3.7. For the max load machine strategy with an improvement policy,
the system of multiple machines under the integer weight setting reaches a Nash
equilibrium in at most 4mW + m4W/m+wmax /2 steps.

PROOF. We divide the schedule into two phases with respect to the maximum
load among machines. The first phase continues until Lmax(t) ≤ W/m + wmax, and
then the second phase starts. Note that in the second phase all jobs on the most loaded
machine might want to stay on it. At the start of the second phase, at time T , the
potential is at most m4Lmax(T ) ≤ m4W/m+wmax . By Eq. (1), at every step the potential
drops by at least two, therefore, the duration of the second phase is bounded by
m4W/m+wmax /2. Thus, it remains to bound the duration of the first phase, namely, T .
At any time t < T we have Lmax(t) > W/m + wmax. Since Lmin(t) ≤ W/m, every
job in the maximal loaded machine can benefit by migrating to the least loaded
machine. The max load machine strategy will choose one of those jobs. By (1), the
decrease in potential is at least 4Lmax (t)/2 ≥ Pun(t)/2m. Therefore, after T steps we
have Pun(T ) ≤ Pun(0)(1 − 1/2m)T . Since Pun(0) ≤ 4W and Pun(T ) ≥ 1, it follows
that T ≤ 4mW , which establishes the theorem.
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4. Related Machines

In this section we consider related machines. We show that for this case, there is
a weighted potential function where the factor of job J is simply its weight w(J )
(most of the proofs of this section are deferred to Appendix A).

We first consider restricted assignments and assume that all jobs follow an im-
provement policy. We first define the potential of the system as follows:

Prl(t) =
m∑

i=1

(Li (t))2

Si
+

n∑
j=1

w2
j

SM( j,t)
=

m∑
i=1

Si (Ti (t))2 +
n∑

j=1

w2
j

SM( j,t)

The following lemma shows that the game is a weighted potential game. Since
the factor of job J , namely, c(J ), is identical to twice its weight w(J ), if all jobs
have unit weight, then the game is an exact potential game (with potential function∑m

i=1
(Li (t))2

2Si
+ ∑n

j=1
w2

j

2SM( j,t)
).

LEMMA 4.1. When a job of size w migrates from machine i to machine j at
time t, then Prl(t + 1) − Prl(t) = 2w(Tj (t + 1) − Ti (t)) < 0.

We would now like to bound the drop in potential in each step. Clearly, if we are
interested in ε-Nash equilibrium, then the drop is at least 2wε > ε. Considering a
Nash equilibrium for integer weights and speeds, the drop is at least (Smax)−2. Since
the initial potential is bounded by W 2, we can derive the following theorem.

THEOREM 4.2. For any ESWS strategy with an improvement policy, the system
of multiple related machines with restricted assignment reaches ε-Nash equilibrium
in at most O(W 2/ε) steps, and reaches Nash equilibrium, assuming both integer
weights and speeds, in at most O(W 2S2

max) steps.

For unrestricted assignment, by forcing the job to move from the most loaded
machine we can improve the bound as follows.

THEOREM 4.3. For the max load machine strategy with a best-reply policy,
the system of multiple related machines with restricted assignment reaches ε-Nash
equilibrium in at most

O

(
W

√
mSmax + nw2

max

ε

)

steps.

Discrete weights. We show that for any K integer weights there is an equiv-
alent model in which wmax is bounded by O(K (Smaxn)4K ), and therefore W =
O(K n(Smaxn)4K ). This allows us to translate the results, using W , to the discrete
weight model by replacing W by O(K n(Smaxn)4K ). (We do not need to calculate
the equivalent weights, since they are only used for the convergence time analysis.)
We first define what we mean by an equivalent set of weights.

Definition 4.4. Two discrete sets of weights w1, . . . , w K and α1, . . . , αK are
equivalent if for any two assignments n1, . . . , nK and �1, . . . , �K , where

∑K
i=1 ni ≤

n and
∑K

i=1 �i ≤ n, we have
∑K

i=1 ni wi >
∑K

i=1 �i wi if and only if
∑K

i=1 niαi >∑K
i=1 �iαi , and

∑K
i=1 ni wi = ∑K

i=1 �i wi if and only if
∑K

i=1 niαi = ∑K
i=1 �iαi .
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Convergence Time to Nash Equilibrium in Load Balancing 11

Intuitively, the preceding definition implies that so long as we only use compar-
isons, we can replace w1, . . . , w K by α1, . . . , αK . Most important is that we can
use in the potential the α’s, rather than the w’s. From the definition of an equivalent
set of weights we can derive the following. Any strategy based on comparisons
of job weights and machine loads and an improvement policy based on compar-
isons of machine loads (e.g., best-reply) would produce the same sequence of job
migrations starting from any initial configuration.

The following theorem, which is proven using linear integer programming tech-
niques, bounds the size of the equivalent weights (the linear program and proof can
be found in Appendix C).

THEOREM 4.5. For any discrete set of integer weights w1, . . . , w K there ex-
ists an equivalent set of integer weights α1, . . . , αK such that for every i αi ≤
K (cSmaxn)4K for some constant c > 0.

Unit weight jobs. We show that for unit weight jobs, there exists a strategy that
converges in mn steps. Unit weight jobs is a special case of Milchtaich [1996] with
a symmetric cost function, and an upper bound of O(mn2) on the convergence time
of a specific strategy was derived. We follow the proof of Milchtaich [1996] and
obtain a better bound in our model (the proof is in Appendix A).

THEOREM 4.6. There exists an ESWS strategy such that the system of multiple
related machines with restricted assignment reaches Nash equilibrium in at most
mn steps in the case of unit weight jobs.

The next theorem presents a lower bound of �(mn) on the convergence time of
some ESWS strategy (different from that of Theorem 4.6).

THEOREM 4.7. There exists an ESWS strategy with an improvement policy such
that for the system of multiple related machines with unrestricted assignment, there
exists a system configuration that requires at least �(mn) steps to reach Nash
equilibrium in the case of unit weight jobs.

5. Identical Machines

In this section we show improved upper bounds that apply to identical machines
with unrestricted assignment. We also show a lower bound for K weights which
is exponential in K . The lower bound is presented for the min weight job policy.
Clearly, this lower bound also implies a lower bound in all the other models (most of
the proofs of this section are deferred to Appendix B). First we derive some general
properties. The next observation states that the minimal load cannot decrease.

Observation 5.1. For a system of multiple identical machines with unrestricted
assignment, at every time step the minimal load among the machines either remains
the same or increases.

Now we show that when a job moves to a new machine, this machine still remains
a minimal marginal-load machine for all jobs at that machine which have greater
weight.

Observation 5.2. For a system of multiple identical machines with unrestricted
assignment, if job J has migrated to its best-response machine Mi at time t , then
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12 E. EVEN-DAR ET AL.

Mi is a minimal marginal-load machine with regard to any job J ′ ∈ Bi (t) such that
w(J ′) ≥ w(J ).

Next we show that once a job has migrated to a new machine, it will not leave it
unless a larger job arrives.

CLAIM 5.3. For a system of multiple identical machines with unrestricted as-
signment, suppose that job J has migrated to its best response machine M at time
t. If J ∈ A(t ′) for t ′ > t , then another job J ′ such that w(J ′) > w(J ) migrated to
machine M at time t ′′, and t < t ′′ ≤ t ′.

PROOF. Since M was the best-response machine for J , this implies that M is
the minimal marginal-load machine at time t with respect to J . By Observation 5.1,
the minimal load never decreases. Thus, the only reason that J wishes to migrate
from machine M is that another job(s) migrated to machine M . By Observation 5.2,
the arrival of a smaller or equal-weight job maintains M as the minimal marginal-
load machine with respect to J . Therefore, it must be the case that at least one job
of weight greater than that of J migrated to M between t + 1 and t ′.

Next we present an upper bound on the convergence time of the max weight job
strategy. (A similar claim (without proof) appears in Schuurman and Vredeveld
[2001].)

THEOREM 5.4. For the max weight job strategy with a best-response policy, the
system of multiple identical machines with unrestricted assignment reaches Nash
equilibrium in at most n steps.

PROOF. By Claim 5.3, once the job has migrated to a new machine, it will not
leave it unless a larger job arrives. Since under the max weight job strategy only
smaller jobs can arrive in subsequent time steps, this implies that each job stabilizes
after the first migration, and the theorem follows.

Now we present a lower bound for the min weight job strategy.

THEOREM 5.5. For the min weight job strategy with a best-response policy,
there exists a system configuration that requires at least ( n

K )K /(2(K !)) ≥ (n/K 2)K

steps for the system of multiple identical machines with unrestricted assignment to
reach Nash equilibrium, where K = m − 1.

We also present a lower bound of n2/4 on the convergence time of min weight
job and FIFO strategies for the case of two machines.

THEOREM 5.6. For min weight job and FIFO strategies with a best-response
policy, there exists a system configuration that requires at least n2/4 steps for
the system of two identical machines with unrestricted assignment to reach Nash
equilibrium.

PROOF. Consider the following scenario. There are n/2 classes of jobs
C1, . . . , C n

2
and each class contains exactly 2 jobs and has weight wi = 3i−1.

Notice that a job in Ci has weight wi = 3i−1, which equals the total weight of all
the jobs in the first i − 1 classes plus 1.

Initially, all jobs are located at the same machine. We divide the schedule into
phases. Let Ci

j denote all jobs from classes C j , . . . , Ci . A k-phase is defined as
follows. Initially, all jobs from classes Ck

1 are located at one machine. During the
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Convergence Time to Nash Equilibrium in Load Balancing 13

phase these jobs, except for one job from Ck , migrate to the other machine. Thus,
the duration of a k-phase is 2k − 1. It is easy to see that the schedule consists of the
phases n/2, . . . , 1 for the min weight job strategy. One can observe that FIFO can
generate the same schedule if ties are broken using minimal weight.

The following theorem shows a tight upped bound of �(n2) on the convergence
time of a FIFO strategy.

THEOREM 5.7. For the FIFO strategy with a best-response policy, the system of
multiple identical machines with unrestricted assignment reaches Nash equilibrium
in at most n(n + 1)/2 steps.

Similarly to FIFO, we bound the expected convergence time of the random
strategy by O(n2).

THEOREM 5.8. For the random strategy with a best-response policy, the system
of multiple identical machines with unrestricted assignment reaches Nash equilib-
rium in expected time of at most n(n + 1)/2 steps.

Discrete weights. For the discrete weight case, we demonstrate an upper bound
of O((n/K +1)K ) on the convergence time of any ESWS strategy, showing that the
bound of Theorem 5.5 for a min weight job is not far from the worst convergence
time.

THEOREM 5.9. For any ESWS strategy with a best-response policy, the system of
multiple identical machines with unrestricted assignment reaches Nash equilibrium
in O((n/K + 1)K ) steps.

Integer weights. For the integer weight case, we show that the convergence
time of any ESWS strategy is proportional to the sum of weights.

THEOREM 5.10. For any ESWS strategy with a best-response policy, the system
of multiple identical machines with unrestricted assignment reaches Nash equilib-
rium in W + n steps.

Unit weight jobs. For unit weight jobs, we present a lower bound on the con-
vergence time of a specific strategy.

THEOREM 5.11. There exists an ESWS strategy with an improvement policy for
which the worst-case number of steps for the system of multiple identical machines
with unrestricted assignment and unit weight jobs to reach Nash equilibrium is at
least �(min{mn, n log n log m

log log n }) steps.

6. Concluding Remarks

In this article we have studied the online load balancing problem that involves selfish
jobs (users). We have focused on the number of steps required to reach a Nash
equilibrium and established the convergence time for different strategies. While
some strategies provably converge in polynomial time, for others the convergence
time might require an exponential number of steps.

In the real world, convergence time is of high importance, since even if the system
starts its operation at a Nash equilibrium, the users may join or leave dynamically.
Thus, when designing distributed control algorithms, the convergence time should
be taken into account.
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14 E. EVEN-DAR ET AL.

Appendix

A. Proofs from Section 4

PROOF OF LEMMA 4.1. Let �(Prl) = Prl(t + 1) − Prl(t).

�(Prl) = (L j (t + 1))2

Sj
+ (Li (t + 1))2

Si
+ w2

Sj
− (Li (t))2

Si
− (L j (t))2

Sj
− w2

Si

= (L j (t) + w)2

Sj
+ (Li (t) − w)2

Si
+ w2

Sj
− (Li (t))2

Si
− (L j (t))2

Sj
− w2

Si

= (L j (t))2 + 2w L j (t) + w2

Sj
+ (Li (t))2 − 2w Li (t) + w2

Si
+ w2

Sj

− (Li (t))2

Si
− (L j (t))2

Sj
− w2

Si

= 2w
(

L j (t) + w
Sj

− Li (t)
Si

)
= 2w

(
L j (t + 1)

Sj
− Li (t)

Si

)
= 2w(Tj (t + 1) − Ti (t))

PROOF OF THEOREM 4.3. Let Prl(t) = Prl
1 (t) + Prl

2 (t), where, Prl
1 (t) = ∑m

i=1
(Li (t))2

Si
and Prl

2 (t) = ∑n
j=1

w2
j

SM( j,t)
. Let T = W∑m

i=1 Si
. We can rewrite the potential

function as follows:

Prl
1 (t) =

m∑
i=1

(Li (t))2

Si
=

m∑
i=1

(Ti (t))2Si

=
m∑

i=1

(Ti (t) − T + T )2Si

=
m∑

i=1

Si T 2 +
m∑

i=1

Si (Ti (t) − T )2 + 2T
m∑

i=1

Si (Ti (t) − T )

=
m∑

i=1

Si T 2 +
m∑

i=1

Si (Ti (t) − T )2,

where we used the fact that
∑

Si Ti (t) = ∑
Li (t) = W = ∑

Si T . The first term∑n
i=1 Si T 2 is constant and therefore can be ignored. We can rewrite the potential

as

Prl(t) =
m∑

i=1

Si (Ti (t) − T )2 +
n∑

j=1

w2
j

SM( j,t)

and redefine Prl
1 (t) = ∑m

i=1 Si (Ti (t) − T )2. By Lemma 4.1, when a job of size w
migrates from machine i to machine j at time t , then �(Prl) = Prl(t)− Prl(t +1) =
2w(Ti (t) − Tj (t + 1)). We also define δ(t) = max{Tmax(t) − T, T − Tmin(t)}.

We divide the run of the algorithm into two phases. The first phase ends when
either δ(t) < 2wmax or Prl

1 (t) < 4mw2
max and then the second phase starts. At time t in
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the first phase we have Prl
1 (t) = ∑

i (Ti (t)−T )2Si ≤ mδ(t)2Smax, which implies that√
Prl

1 (t)
mSmax

≤ δ(t). Since �(Prl) = 2w(Ti (t) − Tj (t + 1)) ≥ 2w(δ(t) − wmax) ≥ δ(t),
we can obtain the following recurrence:

Prl
1 (t + 1) ≤ Prl

1 (t) −
√

Prl
1 (t)

mSmax

Let t0 = 1 and let ti be the first time t at which Prl
1 (t) ≤ Prl

1 (t0)/2i . Since Prl
1 (t) ≥

Prl
1 (ti−1)/2 for t ∈ [ti−1, ti ], we have that ti ≤ ti−1 +

√
mSmax Prl

1 (ti−1)/2. When

Prl
1 (t) < 4mw2

max, we have clearly finished the first phase. This implies that the
duration of the first phase is bounded by

t� ≤
�∑

i=1

√
mSmax Prl

1 (t0)/2i = O
(√

mSmax Prl
1 (t0)

)
,

where � = log Prl
1 (t0) ≤ log W 2Smax.

At the start of the second phase, at time τ , we bound the potential as follows.
Clearly, Prl

2 (τ ) ≤ nw2
max. Since we ended the first phase, either Prl

1 (τ ) is bounded
by 4mw2

max, or δ(τ ) < 2wmax, which implies that Prl
1 (τ ) is bounded by 4mw2

max. This
implies that

Prl(τ ) = O
(
mw2

max + nw2
max

)
.

Since we can assume that n ≥ m, we obtain

Prl(τ ) = O
(
nw2

max

)
.

Since we are interested in ε-Nash, the minimal improvement is at least ε, and we
derive a Prl(τ )/ε bound on the second phase.

PROOF OF THEOREM 4.6. We first give the definition of push-out and pull-in
paths as defined in Milchtaich [1996].

Definition A.1. A push-out path is a triplet (s, MM, JJ), where s is a sys-
tem state, MM = Mi0, Mi1, Mi2, . . . , MiN , and JJ = Ji1, Ji2, . . . , JiN where the
sequence of migration, starting at state s, and following it at step k having
job Jik migrate to machine Mik from machine Mik−1 , is a legal execution of an
ESWS. Similarly, a pull-in path is a triplet (s, MM, JJ), where s is a system state,
MM = Mi1, Mi2, . . . , MiN , MiN+1 , and JJ = Ji1, Ji2, . . . , JiN where the sequence of
migration, starting at state s, and following it at step k having job Jik migrate from
machine Mik to machine Mik+1 , is a legal execution of an ESWS.

In contrast to the result in Milchtaich [1996], we can bound the pull-in path by
m steps as well, rather than nm, since the payoff is symmetric. The algorithm we
consider is found in Algorithm 1.

LEMMA A.2. Each iteration of the loop (A–C) terminates after at most m steps.

PROOF. A is a single step. Since in both the pull-in path and push-out path no
machine is repeated twice, we obtain the following: B is a push-out path through
U1, thus has at most |U1| steps. C is a pull-in path in U2, thus has at most |U2| steps.
Since |U1| + |U2| + 1 ≤ m we conclude the lemma.
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16 E. EVEN-DAR ET AL.

Algorithm 1. PUSH-OUT PUSH-IN

While (A(t) 
= ∅) do

A Choose J ∈ A(t). Let M be the machine with job J , U1 be the set of machines with load smaller
than that of M , and U2 be the complement of U1.

B Let J migrate to machine M ′ ∈ U1 and continue with a push-out path. (Namely, if some job J ′

now wants to migrate from M ′, add it to the push-out path, and continue.);
C If there exists a job I ∈ U2 that wants to migrate from M ′ to M , let it and follow a pull-in path.

(Namely, if some job I ′ now wants to migrate to M ′, add it to the pull-in path, and continue.)

end

It still remains to show that in two times t < t̃ in which we are at the start of an
iteration, we have that A(t̃) ⊂ A(t). We prove that for any two consecutive times
t and t ′, where t ′ < t , at the start of an iteration we have A(t ′) ⊂ A(t). We note
that after performing steps A–C the load is changed only in two machines: the last
machines in the pull-in and the push-out paths. Since in the rest of the machines
the load remains unchanged, a job on them becomes unstable only if it wants to
migrate to the last machine in the pull-in path, but this is not possible.

PROOF OF THEOREM 4.7. Let Si = 1+ i/n. The initial configuration has n unit
weight jobs on M1. Note that the only Nash equilibrium assigns n/m jobs on each
machine. Now consider the strategy that each time takes a job from M1 and moves
it through all the machines to the one with the least number of jobs. The number
of steps

∑n/m
i=1

∑m
j=1(m − j) = �(nm).

B. Proofs from Section 5

PROOF OF THEOREM 5.5. Consider the following scenario. There are m − 1
classes of jobs C1, . . . , Cm−1 and each class contains l = n/(m − 1) jobs. The
weights of the jobs are defined recursively: All jobs in class C1 have weight 1 and
all jobs in a higher class have weight larger than the total weight of all the jobs
in the first i − 1 classes, namely, wk = l

∑k−1
i=1 wi + 1. (For example we can set

wk = �k(k − 1)! + k.) Initially, all jobs of class Ci (i = 1, . . . , m − 1) are located
at machine Mi+1. We show that for the min weight job strategy it takes at least
lm−1/(2((m −1)!)) steps to converge. Notice that fixing a job selection strategy, the
improvement policy to be the best response, and the initial configuration determine
uniquely the entire schedule.

We start with a few useful notations. We denote by Ci
j all the classes C j , . . . , Ci .

Similarly, Mi
j denotes the machines M j , . . . , Mi .

We divide the schedule into phases. A k-phase is defined as follows. Initially,
all the jobs from classes Ck

1 are located at a machine M ′ and there is a set S of k
machines (not including M ′) participating in the phase that contain an equal number
of jobs from any class higher than Ck , and this number is less than or equal to the
number of jobs of the corresponding class located on any machine not in S. During
the phase all but l/(k + 1) jobs from Ck are balanced between the machines in S.
We will demonstrate that the duration of a phase grows exponentially with k. First
we need the following definition and observation.
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Convergence Time to Nash Equilibrium in Load Balancing 17

Definition B.1. For a set of machines S we define by MINi (S) the subset of
machines in S that contain the minimal number of jobs from Ci .

Observation B.2. Suppose that at time t , a job from Ck is selected by the min
weight job strategy. Let Cr be a class in {Ck−1

1 } and let J be a job from Cr . It must
be the case that M(J, t) ∈ MINr+1(MINr+2(. . . (MINm−1({Mm

1 })))).
The observation follows from the fact that no job from Cr wishes to change its

machine and the weight of any job in a high class is greater than the total weight of
all jobs in the lower classes. Now we give a lower bound on the duration of a k-phase.

LEMMA B.3. The duration of a k-phase is at least lk/(2(k!)).

PROOF. The proof is by induction on the phase index.
Induction hypothesis. The duration of a k-phase is at least lk/(2(k!)).
Basis (k = 1). Let us consider the 1-phase. Half of the jobs from C1 migrate to
another machine. Thus, the induction hypothesis trivially holds.
Step. Suppose that the induction hypothesis holds for all phases with index k ′
such that k ′ < k and let us prove that it is also satisfied for a k-phase. After k − 1
migrations of jobs from Ck , all jobs form the lower classes are concentrated at the
same machine, since only one machine does not contain a job from class Ck , and
by Observation B.2 this implies that the best-response is unique.

Thus, every kth moving job from Ck would initiate a (k − 1)-phase. Hence, the
number of (k − 1)-phases initiated by the jobs from Ck is l/k. By the induction
hypothesis the duration of each (k − 1)-phase is at least lk−1/(2((k − 1)!)).
Therefore, the duration of a k-phase is at least

l
k

· lk−1

2((k − 1)!)
= lk

2(k!)
.

It is easy to see that every (m − 1)th moving job from Cm−1 generates a new
(m − 2)-phase. The duration of the convergence period follows by Lemma B.3
after substituting m − 1 instead of k.

PROOF OF THEOREM 5.7. We define a round to be a maximal sequence of jobs
that migrate in which no job is repeated twice. Consider a round R and let J be the
maximum-weight job that wishes to migrate at the beginning of R. There exists a
time t during round R in which job J either was selected by FIFO and migrated
or become stable. According to Claim 5.3, J will not migrate in any subsequent
rounds. Therefore, the duration of the kth round is at most n − k + 1. Thus, the
total convergence time is bounded by n(n + 1)/2.

PROOF OF THEOREM 5.8. We define round to be the sequence of jobs that migrate
until the maximum-weight job, that wants to migrate, migrates. Consider a round R
and let J be the maximum-weight job that wishes to migrate at the beginning of R.
According to Claim 5.3, J will not migrate in any subsequent rounds. Therefore,
there are at most n − k + 1 jobs that want to migrate in the kth round and using
the random strategy its expected time is at most n − k + 1. Thus, the expected
convergence time is bounded by n(n + 1)/2.

PROOF OF THEOREM 5.9. Suppose that we have K classes of jobs C1, . . . , CK
with weights w1 < · · · < w K . Notice that each job from the Kth class moves at
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18 E. EVEN-DAR ET AL.

most once, while the number of migrations of a job in a lower class is bounded by
the number of job migrations in all the higher classes plus one.

Hence, the number of moves of a job is defined by the following recursion:
f (i) = ∑K

j=i+1( f ( j) · |C j |) + 1, where f (i) is the maximal number of moves of a
job from class Ci . Notice that f (K ) = 1. We argue that f (i) = ∏K

j=i+1(|C j | + 1)
for i < K :

f (i) =
K∑

j=i+1

( f ( j) · |C j |) + 1

= f (i + 1) · |Ci+1| +
K∑

j=i+2

( f ( j) · |C j |) + 1

= f (i + 1) · |Ci+1| + f (i + 1) = f (i + 1)(|Ci+1| + 1),

then we can continue recursively with f (i + 1) and so forth. Thus, the to-
tal number of job moves is bounded by

∑K−1
i=1 (|Ci |

∏K
j=i+1(|C j | + 1)) + |CK |.

Using Lagrange multipliers we obtain that this expression is maximized when
|Ci | = n/K for all 1 ≤ i ≤ K , since

∑K
i=1 |Ci | = n. This derives an up-

per bound of
∑K−1

i=1 ( n
K

∏K
j=i+1(n/K + 1)) + n/K = O((n/K + 1)K−1n/K ) =

O((n/K + 1)K ).

PROOF OF THEOREM 5.10. By Claim 5.3, once the job has switched to a new
machine, it will not leave unless a larger job arrives. Thus, all but one move of a
job results from migrations of jobs with greater weight to its machine. Observe that
when a job J moves to a machine M , it can force other jobs with total weight of
at most w(J ) − 1 to migrate from M . Otherwise, some job would leave a minimal
marginal-load machine. Then these jobs, in their turn, may cause migrations of
other jobs on their destination machines. We claim that the total number of recursive
migrations due to J is bounded by w(J ) − 1. Let us define the push-out potential
of the set of migrating jobs S, PO(S) = ∑

J∈S(w(J ) − 1). Initially, S consists of
one job J and PO(S) = w(J ) − 1. Then when a job J ′ ∈ S migrates we remove
it from S and add jobs on its target machine that would move due to J ′, but their
total weight is less by at least one than J ′ weight, thus PO decreases by at least one.
Hence, the total number of migrations resulting from moves of all jobs is bounded
by W and the theorem follows.

PROOF OF THEOREM 5.11. The initial configuration is as follows: n identical
jobs on machine 1 and none on the other machines. First we show for m ≤ log(n)
a strategy which requires at least (m−1)n

2 steps to reach Nash equilibrium. The
strategy works as follows. First it moves n/2 jobs to machine M2. Now recursively,
considering machines M2 to m we have m−1 machines and n/2 jobs (on machine 2).
After balancing the n/2 jobs on machines Mm

2 we reconsider machine 1. Now every
machine has at least n/(2(m −1)) jobs. Therefore we can continue recursively with
m machines and n/2 − n/(2(m − 1)) jobs.

We let f (n, m) be the number of steps in which the algorithm reaches Nash
equilibrium. Then we have f (n, m) = n

2 + f (n/2, m −1)+ f ( n
2 − n

2(m−1) , m). Next

we prove by induction that f (n, m) ≥ (m−1)n
2 . For the basis we have that f (k, 1) = 0

and since we have that m ≤ ln(n), this suffices for the basis. We assume that the
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induction holds for k ′ ≤ k, l ′ ≤ l and prove for (l, k).

f (l, k) = l
2

+ f
(

l
2
, k − 1

)
+ f

(
l
2

− l
2(k − 1)

, k
)

= l
2

+
l
2 (k − 2)

2
+

( l
2 − l

2(k−1) )(k − 1)

2

= l
2

+ lk
4

− l
2

+ lk
4

− l
4

− l
4

= lk
2

− l
2

= l(k − 1)

2
,

for the case where m > log(n). We consider the case where the strategy first
balances the jobs on machines M log(n)

1 , requiring �(n log n) steps. Later we con-
sider log n independent problems, each having m log n machines and n/ log n
jobs, all starting on one machine. Each such level would require �(n log n)
steps. There are log m/ log log n such levels, therefore we have a lower bound
of �(n log(n) log m

log log n ).

C. Equivalent Weights

We first describe the intuition of Theorem 4.5. The idea of equivalent weights is that,
rather than considering the exact load of each assignment, we are only interested
in their relative load. Specifically, we are only interested in comparing the load on
two different machines. From Definition 4.4 an equivalent set of weights is a set of
weights which keeps the relative order between every pair of assignments. Our aim
is to write a linear integer program that will describe the constraints that for any
two possible assignments the comparison between the loads is maintained, and to
use the fact that integer linear programming is NP.

PROOF OF THEOREM 4.5. The proof is done by using the fact that integer linear
programming is in NP.

THEOREM C.1 [HOPCROFT AND ULLMAN 1979]. Let Ax ≥ b be an integer
linear programming such that A is an m × n matrix of integers and b is a column
of n integers. Then there exists a solution x such that ‖x‖∞ ≤ �(cα)4�, where α is
the magnitude of the largest element of A and b, � = min{n, m}, and c ≥ 1

Since the proof can be found in the literature, we provide only the main technical
lemma required for our setting and its proof here.

LEMMA C.2. If B is a square submatrix of A, then |det(B)| ≤ (cα)�, where c
is some constant larger than one and � = min{n, m}.

PROOF. Let B be a square submatrix of size k. If k is greater than �, then the
determinant is 0. Otherwise, the determinant is a sum of k! terms each a product of
k elements. Now using the fact that k ≤ � and that each element is bounded by α
we obtain the lemma.

Now we are ready to prove our theorem. Definition 4.4 defines equivalent set of
weights. Let {w1, . . . , w K } be a set of K integer weights. We consider all possible
assignments (of up to n) jobs from K different integer weights to a single machine.
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We can encode an assignment by (n1, . . . , nK ), where
∑K

i=1 ni ≤ n, and the load on
a machine is L = ∑K

i=1 wi ni . The integer program for identical machines is defined
as follows. Let x1, . . . , xK be the unknown (new) weights. For every two possible
assignments �α = (α1, . . . , αK ) and �β = (β1, . . . , βK ) such that

∑K
i=1 αi ≤ n and∑K

i=1 βi ≤ n, we generate an inequality in the integer linear program. The inequality
compares

∑K
i=1 αi xi and

∑K
i=1 βi xi . To decide the result of the comparison we

compare
∑K

i=1 αi wi to
∑K

i=1 βi wi . If they are equal, we add the equation
∑K

i=1(αi −
βi )xi = 0 . If

∑K
i=1 αi xi >

∑K
i=1 βi xi , we add

∑K
i=1(αi − βi )xi > 0. Otherwise,

we add
∑K

i=1(αi − βi )xi < 0. In addition, we require that the weights are positive,
namely, for every i we have an inequality xi > 0.

For the related machines we need to take into account their speeds, as well (we
assume that the speeds are integers). Rather than generating an inequality for each
pair of assignments, we generate an inequality for each pair of assignments and
machines. For instance, if the assignments are �α and �β and the machines are M1

and M2, then we compare
∑K

i=1 S2αi wi to
∑K

i=1 S1βi wi . The generated inequality
would depend, as before, on the output of the comparison.

Let A be the matrix that represents the inequalities. For identical machines the
sum of the absolute entries in each row is bounded by O(n), and for related machines
by O(nSmax). Together with Theorem C.1, we conclude the proof.
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