
Approximation Algorithms for Average Streth Sheduling�Mihael A. Bender 1 S. Muthukrishnan 2 Rajmohan Rajaraman 3July 22, 2003AbstratWe study the basi problem of preemptive sheduling of a stream of jobs on a single proessor.Consider an online stream of jobs, and let the ith job arrive at time r(i) and have proessingtime p(i). If C(i) is the ompletion time of job i, then the ow time of i is C(i) � r(i) andthe streth of i is the ratio of its ow time to its proessing time; that is, C(i)�r(i)p(i) . Flow timemeasures the time that a job is in the system regardless of the servie it requests; the strethmeasure relies on the intuition that a job that requires a long servie time must be prepared towait longer than jobs that require small servie times.We present improved algorithmi results for the average streth metri in preemptive unipro-essor sheduling. Our �rst result is an o�ine polynomial-time approximation sheme (PTAS)for average streth sheduling. This improves upon the 2-approximation ahieved by the onlinealgorithm srpt that always shedules a job with the shortest remaining proessing time. Inreent work, Chekuri and Khanna [7℄ have presented approximation algorithms for weightedow time, whih is a more general metri than average streth; their result also yields a PTASfor average streth. Our seond set of results onsiders the impat of inomplete knowledge ofjob sizes on the performane of online sheduling algorithms. We show that a onstant-fatorompetitive ratio for average streth is ahievable even if the proessing times (or remainingproessing times) of jobs are known only to within a onstant fator of auray.1 IntrodutionWe onsider the basi uniproessing sheduling senario. We have a single proessor that proessesjobs as they arrive online. The ith job arrives at time r(i) and has proessing time p(i) that isknown at the time of its arrival. We restrit our attention to sheduling with preemption; that is,jobs may be stopped before their ompletion and resumed later after other jobs get exeuted in theinterim.Traditionally, the fous of performane has been on the ow time (also referred to as the responsetime), whih is de�ned as the amount of time that a given job spends in the system. That is, if C(i)is the ompletion time of job i, then the ow time is C(i)� r(i). Alternatively, pratitioners haveused slowdown or streth to measure the e�et of sheduling on an individual job (e.g., [10℄. Thestreth of a job is the ratio of its ow time to its proessing time; that is, C(i)�r(i)p(i) [5℄. Streth is1Department of Computer Siene, SUNY at Stony Brook, NY 11794, Email: bender�s.sunysb.edu.2Department of Computer Siene, Rutgers University, Pisataway, NJ 08854, Email: muthu�s.rutgers.edu.Part of this work was done while the author was at AT&T Shannon Laboratories, Florham Park, NJ 07932.3College of Computer & Information Siene, Northeastern University, Boston, MA 02115, Email:rraj�s.neu.edu. Supported by NSF CAREER award NSF CCR{9983901.�The results of this paper appeared earlier in an extended abstrat [6℄.1

a rather natural riterion: jobs that require large proessing time must be prepared to wait longerthan the ones that need the system for less time.Overview of our results. We present improved algorithmi results for the average strethmetri, or, equivalently the total streth metria, in preemptive uniproessor sheduling.� PTAS for average streth: We present a polynomial time approximation sheme (PTAS) forminimizing average streth o�ine. For any onstant " > 0, our algorithm yields an (1 + ")-approximation in O(npoly(1=")) time.Our PTAS result, whih appears in Setion 3, improves on the approximation fator of 2ahieved by the online shortest remaining proessing time algorithm (srpt). Furthermore,there exists a onstant > 1 suh that no online algorithm an ahieve a ompetitive ratioof better than [17℄.Our approah for developing a PTAS for average streth is to round the job sizes to the nearestintegral power of (1 + "), thus dividing the jobs into groups, and then sheduling the groups fromthe smallest rounded job size to the largest. Sheduling one group of jobs, however, onstrains thetimes at whih other groups of jobs may be sheduled. Designing a (1+")-approximate shedule forsuh \onstrained" sheduling problems poses a key hallenge in the design of a PTAS. The heartof our result, whih is presented in Setion 3, is a useful haraterization of (1 + ")-approximateshedules that redues the size of the searh spae of relevant shedules.The tehnique of rounding job sizes, whih is used in our PTAS, is a ommonly-used tool andis e�etive in reduing the spae of shedules of interest to yield eÆiently omputable shedules.Rounding also has great pratial signi�ane. Traditionally, sheduling algorithms assume om-plete knowledge (lairvoyane) of the proessing times of the jobs. In pratie, however, estimatingjob sizes annot be aurate in general. So a more reasonable approah is to assume that the upperand lower bounds on the job sizes are known that are orret up to a onstant fator. In Setion 4,we analyze the average streth and ow performane of two natural on-line algorithms that shedulejobs on the basis of the rounded values of the remaining proessing times, and proessing times,respetively.� Study of the impat of rounding: We �rst analyze a generalization of srpt, referred to as�-srpt, whih shedules in eah step a job with remaining proessing time within a (1 + �)-fator of the shortest remaining proessing time, for some onstant � > 0. We show thatwhile �-srpt is O(1)-ompetitive with respet to average streth, it is
(log�)-ompetitivewith respet to average ow time, where � is the ratio of the largest job size to the smallestjob size. We then present a suitable re�nement of �-srpt that is O(1)-ompetitive withrespet to both average streth and average ow time. The preeding results are appliablein sheduling senarios in whih remaining proessing times of jobs are approximately knownat eah step. A more realisti model for partial knowledge of job sizes is a relaxation of thenon-lairvoyant model, in whih the proessing time of any job is known to within a onstantfator only at the time of the release of the job. Under this model, we show that a variantof the shortest proessing time algorithm (spt) is O(1)-ompetitive with respet to averagestreth.aThe average streth of a given shedule is the ratio of the sum of the strethes of all the jobs in the shedule, whihis the total streth, to the number of jobs in the instane. Thus, average streth and total streth are equivalent, interms of both optimization and approximation. 2

Related work. This paper fouses on the online and o�ine omplexity of streth sheduling.Two measures losely related to average streth are weighted ompletion time and weighted owtime, eah of whih assoiate a weight w(i) with eah job i. If we set the weight of job i tobe the reiproal of proessing time (i.e., 1=p(i)), then the total weighted ompletion time of agiven shedule beomes Pi C(i)=p(i), whih equals Pi(C(i)� r(i))=p(i) +Pi r(i)=p(i) (here C(i)is the ompletion time of job i in the given shedule). With the preeding weight assignment,the total weighted ompletion time thus equals the total streth plus a term (Pi r(i)=p(i)), whihis independent of the shedule. Thus, optimizing weighted ompletion time also optimizes totalstreth, whih is idential to optimizing average streth. In terms of approximation, however, theweighted ompletion time and average streth metris are signi�antly di�erent. Consequently, thereent PTAS for weighted ompletion time [1℄ does not yield any useful approximation for averagestreth. The average weighted ow time with weights given by the reiproal of proessing times,on the other hand, is idential to the average streth metri. The best known approximation resultfor weighted ow time is the reent approximation sheme of [8℄, whih takes time superpolynomial,but subexponential, in the input size. In a subsequent study [7℄ performed independently of ourwork, it has been shown that a quasi-PTAS is ahievable for weighted ow time when � and theratio of the maximum weight to minimum weight are both polynomially bounded. Sine [7℄ studythe weighted ow time metri, their results are more general than ours; when applied to the speialase of the average streth metri, the results of [7℄ yield a PTAS, thus mathing our result foraverage streth.Our models for apturing inomplete information of job sizes may be viewed as relaxationsof non-lairvoyant sheduling. In non-lairvoyant sheduling, no information about job sizes isavailable at release time. The ompetitiveness of non-lairvoyant uniproessor sheduling, withrespet to the average ow metri, is studied in [11, 15℄. Our model of unertainty in job sizes isrelated to a general framework developed in [3, 4℄, whih also aptures the variane in job sizes byusing lower and upper limits. The underlying model of job arrivals and the performane metristudied are di�erent, however; in [3, 4℄, the jobs are given at the start of the omputation and needto be sheduled on an asynhronous multiproessor system to minimize makespan.As mentioned at the outset, our study onerns the basi uniproessor preemptive shedulingsetting. More omplex sheduling senarios have been studied, inluding multiproessor sheduling(e.g., [14℄), broadast sheduling (e.g., [12℄), and network onnetion sheduling (e.g., [9℄). Clearly,some of the questions we have raised are relevant in these senarios, and deserve further attention.2 PreliminariesIn this setion, we present some basi de�nitions and notation, that are used frequently in theremainder of the paper. Let I be a given sheduling instane. Reall that a sheduling instane isspei�ed by a set of jobs J , and for eah job j 2 J , a release time r(j) and a proessing time p(j).We restrit our attention to disrete time, and assume that the release times and proessingtimes are all nonnegative integers. We note that any instane with rational release and proessingtimes an be transformed to an equivalent instane with integral release and proessing timesthrough saling; furthermore, the size of the transformed instane is polynomial in the size ofthe original instane. In our analyses, we frequently need to refer to time intervals ontainingonseutive time steps. We use the notation [t1; t2℄ to refer to the set of time steps ft : t1 � t � t2g.For a given shedule, the queue at a given time t onsists of all jobs that have been released ator before time t and not ompleted by time t. The remaining proessing time of jobs in the queueplays an important role in our analyses. We let �t(j) denote the remaining proessing time of job j3

at time t in the given shedule. We say that a job j delays job j0 6= j at time t in a given shedule,if j is sheduled at time t and j0 is in the queue at time t. We overload the de�nition of delay andsay that a job j delays job j0 if there exists any time t at whih j delays j0.3 PTAS for o�ine average strethIn this setion, we desribe a polynomial-time approximation sheme (PTAS) for the total strethmetri (equivalently, average streth) in uniproessors. Our presentation is organized into 5 sub-setions. In Setion 3.1, we present an overview of our algorithm, state three key lemmas, andderive the main result based on the key lemmas. In Setion 3.2, we establish basi harateristisof optimal shedules. In Setions 3.3 through 3.5, we prove the three lemmas stated in Setion 3.1.3.1 Overview and main theoremWe begin by introduing some notions of instanes and shedules that play a entral role in ouralgorithm and its analysis. In the proess of onstruting a omplete shedule for a given instane,we derive partial shedules in whih we shedule a subset of the jobs in the instane. The remainingjobs are thus forbidden to be sheduled at the times assigned in the partial shedule. We refer tothe set of remaining jobs, their release times, and the forbidden times as a onstrained instane.A onept ommonly used in sheduling is that of list shedules. A list shedule is a shedule thatassigns a priority order among the jobs; in eah step of the shedule, of those jobs already releasedand not yet ompleted, the job with the highest priority is sheduled. It is easy to show that everyoptimal shedule for any onstrained instane is a list shedule (Lemma 3.4 of Setion 3.2). Werestrit our attention to another lass of shedules, whih we refer to as natural, that is well-suitedfor ow and streth metris. We say that a shedule is natural if it satis�es the property that a jobj delays a job j0 with smaller proessing time at a given time t only if the remaining proessingtime of j at time t is less than that of j0 at time t. Formally, in a natural shedule, if a job j delaysjob j0 at time t and p(j) > p(j0), then �t(j) < �t(j0) = p(j0). It an be shown that every optimalshedule is a natural shedule (Lemma 3.5 of Setion 3.2).We divide the jobs into groups suh that the sizes of the jobs within a group di�er from oneanother by a fator of at most (1 + "), where " > 0 is an arbitrary onstant. Formally, for anynonnegative integer i, let group i onsist of all jobs with size at least (1+")i and less than (1+")i+1.To motivate our algorithm and to failitate the analysis, we introdue the notion of rounded streth.The rounded streth of a job j in a given shedule is the ratio of the ow time of j in the sheduleto (1 + ")i, where i is the group to whih j belongs. Sine the proessing time of a job in group iis at least (1 + ")i and at most (1 + ")i+1, it follows that the rounded streth of a job in a sheduleis within a fator of 1 + " of the atual streth of the job in the shedule. We de�ne the roundedost of a shedule to be the sum of the rounded streth of all the jobs in the shedule. Thus, therounded ost of a shedule is within a (1 + ") fator of the atual ost of the shedule.We heneforth adopt rounded ost as our objetive funtion. Thus, unless otherwise stated,whenever we refer to an optimal shedule, we refer to a shedule with minimum rounded ost.A naive approah to minimizing rounded ost for a given onstrained instane is to assign equal\weight" to eah job within a group and shedule the jobs within the group in FIFO order. It turnsout, however, that the resultant shedule an have ost twie that of the optimal. It an be showninstead that in a shedule with optimal rounded ost, the jobs within a group need to be sheduledin srpt order. We refer to suh shedules as srpt-friendly shedules. In Setion 3.2, we show thatevery optimal shedule is srpt-friendly (Lemma 3.6).4

The notion of srpt-friendly shedules allows us to assign an ordering among jobs within a group,that is among jobs that have similar proessing times. At the other end, we an argue that if wehave two jobs, one of whih is \substantially larger" than the other, then a shedule that optimizestotal streth tends to favor the smaller job. We formalize the notion of \substantially larger" bypartitioning the groups into bloks and superbloks as follows. Blok i, for i � 0, onsists of groupsig through (i+1)g�1, where g equals log1+"(1="2). For simpliity, we assume throughout Setion 3that 1=" is an integer. All our arguments an be easily modi�ed to address the ase where 1=" isnon-integral. It follows from the de�nition of a blok that the size of any job in blok i is at least1="2 times the size of any job in blok j for any j < i � 1. We further partition the bloks intosuperbloks. Superblok 0 onsists of bloks 0 through b � 1, where b < 1="2 is spei�ed below.Superblok i, for i > 0, onsists of bloks b + (i � 1)="2 through b + i="2 � 1. We selet b suhthat the total number of jobs in the largest numbered bloks of all of the superbloks is at mostn"2. We note that sine there are 1="2 hoies for b, one suh hoie exists. For any group i, we letblk(i) (resp., spr(i)) denote the blok (resp., superblok) to whih i belongs. For any superblok s,we let grps(s) and blks(s) denote the groups and bloks, respetively, in superblok s.Our organization of the jobs in groups, bloks, and superbloks has the property that for anysuperblok i, jobs in every blok of i, but for the largest numbered blok, have size at most "2 timesthat of any job in superblok j for j > i. Furthermore, the total number of jobs in the largestnumbered bloks of all superbloks is at most n"2. In the following lemma, we make use of thepreeding properties to argue that in our searh for an (1 + O("))-approximate shedule, we anrestrit our attention to shedules in whih no job in superblok i delays a job in superblok j < i,for any i; we refer to suh shedules as hierarhial shedules.Lemma 3.1 For any " > 0 hosen suÆiently small, there exists a (1 + 3")-approximate naturalsrpt-friendly list shedule that is hierarhial.Lemma 3.1 allows us to divide the given instane into several independent onstrained instanes,eah of whih ontains jobs belonging to one superblok only. A superblok ontains jobs belongingto a onstant number of groups. We are able to show that sine the optimal shedule for a superblokis natural and srpt-friendly, we an divide the given instane into a sequene of onstrainedinstanes, in eah of whih there is exatly one job from the largest numbered group. Unfortunately,this alone does not signi�antly limit the number of di�erent shedules for one of these instanes.We overome this hurdle by showing that we an restrit our spae of shedules to those shedulesin whih a partiular job (in our ase, the lone job from the highest numbered group) delays atmost smaller jobs, while inurring an inrease in rounded ost of at most (1 + 1=), for any givenpositive integer .Lemma 3.2 Let I be any onstrained instane. Let m denote the largest group number of any jobin I. Furthermore, suppose that there is exatly one job j from group m in I. Then, given anypositive integer , any natural list shedule for I an be transformed into another list shedule inwhih j delays at most smaller jobs, while inurring an inrease in rounded ost by a fator of atmost 1 + 1=.Lemma 3.2 and an enumeration of shedules of interest establishes the following laim, thatforms the �nal piee of the algorithm.Lemma 3.3 For any Æ > 0, there exists an nO(k=Æ)-time algorithm to determine a (1 + Æ)k-approximate shedule for any onstrained instane with k groups, where n is the number of jobs inthe given instane. 5

Using Lemmas 3.1 and 3.3, we now prove the main theorem of this setion.Theorem 1 There exists a PTAS for average streth sheduling.Proof: Let I denote the given instane. Let s denote the number of superbloks. Without lossof generality, we assume that the superbloks are numbered 0 through s� 1. For 0 � i � s, let I[i℄denote the sub-instane of I onsisting of jobs in superbloks 0 through i� 1.Our algorithm onsists of iteratively going through the superbloks, from the smallest to thelargest job sizes, and applying the algorithm of Lemma 3.3 to eah superblok as follows. Let Sidenote the shedule obtained at the start of iteration i (we ount iterations from 0). Note that S0 isthe empty shedule. We let Ci denote the onstrained instane onsisting of the jobs in superbloki, with the forbidden times being the set of time steps in whih the shedule Si shedules a job.In iteration i, we apply the algorithm of Lemma 3.3 to the onstrained instane Ci. Let S denotethe shedule obtained for the onstrained instane. We obtain Si+1 by merging the two shedulesSi and S; that is, a job is sheduled at time t in Si+1 if it is sheduled at time t in exatly one ofSi or S. Sine the set of times when a job is sheduled in S is disjoint from the set of times whena job is sheduled in Si, Si+1 is a well-de�ned shedule for the jobs in superbloks 0 through i. Ifs is the number of superbloks in the given instane, then Ss is the �nal shedule obtained by thealgorithm.We now analyze the approximation ratio ahieved by the algorithm. We argue that the sheduleSs is a (1 + 7")-approximate shedule, for " > 0 suÆiently small. This argument is in two parts.We �rst prove, by indution on i, that Si is a (1 + 2")-approximate shedule for the instane I[i℄among all hierarhial shedules. For the base ase, we let i = 0, and the laim holds trivially.For the indution step, we note that any hierarhial shedule for the instane I[i℄ onsists of twodisjoint shedules: one for the instane I[i�1℄ and the other for the instane Ci�1. By the indutionhypothesis, Si�1 is a (1 + 2")-approximate shedule for I[i � 1℄ among all hierarhial shedules.Superblok i � 1 onsists of at most g="2 groups where g = log1+"(1="2) � 2 lg(1=")=", for "suÆiently small. Applying Lemma 3.3 to onstrained instane Ci�1 with Æ equal to "4=(2 lg(1="))and k equal to 2 lg(1=")="3, we obtain that the shedule S obtained in iteration i is a (1 + 2")-approximate shedule for Ci�1, as shown in the following:�1 + "42 lg(1=")�2 lg(1=")="3 � e" � (1 + 2");for " > 0 suÆiently small. Thus, the shedule Si, whih is obtained by merging the shedules Si�1and S, is a (1 +2")-approximate shedule for I[i℄ among all hierarhial shedules. This ompletesthe indution step.For the seond part of the approximation ratio argument, we invoke Lemma 3.1 to obtainthat there exists a hierarhial shedule whose total streth is at most (1 + 3") of the optimumrounded streth, taken over all shedules. Thus, the total rounded streth of shedule Ss is atmost (1 + 2")(1 + 3") times the optimal total rounded streth. Sine the total streth is within(1+ ") of the total rounded streth, the approximation fator ahieved by our algorithm is at most(1 + ")(1 + 2")(1 + 3") � (1 + 7"), for any positive onstant " suÆiently small.We now analyze the running time of the algorithm. By Lemma 3.3, the running time foriteration i is a polynomial in the number of jobs in superblok i with exponent O(1=("7 lg2(1="))),for " > 0 suÆiently small. Adding over all iterations, we obtain that the total running time isnO(1=("7 lg2(1="))), where n is the total number of jobs. We thus have a PTAS for average strethsheduling. 6

The remainder of this setion is organized as follows. Setion 3.2 establishes ertain harater-istis of optimal shedules. Setions 3.3, 3.4, and 3.5 establish Lemmas 3.1, 3.2, and Lemma 3.3,respetively.3.2 Natural srpt-friendly list shedulesThe following two lemmas apply to optimal shedules with respet to both streth and roundedstreth.Lemma 3.4 For any onstrained sheduling instane, every optimal shedule is a list shedule.Proof: Let S be a shedule that has optimal total streth (or rounded streth) and yet is not alist shedule. Sine S is not a list shedule, it follows that there exist two jobs j1 and j2 and a timestep t suh that j1 �nishes before j2 and yet at time step t that ours after the release of and priorto the ompletion of j1, j2 is exeuted. We modify the shedule S to obtain a new shedule S 0 withsmaller ost as follows. S 0 is the same as S exept that j1 is sheduled at time t and j2 is sheduledat the time step when j1 ompletes in S. Sine j1 ompletes earlier in S 0 than in S and all otherjobs omplete at exatly the same times, S 0 has lower ost than S, thus yielding a ontradition.Lemma 3.5 For any onstrained sheduling instane, every optimal shedule is a natural shedule.Proof: Let S be a given optimal shedule that is not natural. Let j be a job that delays a smallerjob j0 exeuted at time t, and let t be the earliest suh time. We �rst derive a ontradition if�t(j) > �t(j0). Sine S is a list shedule, j ompletes before j0. Consider the time steps startingfrom t at whih either j or j0 is exeuted. During these steps, j is �rst exeuted and then j0. Weswap the order to obtain a new shedule S 0. The ompletion time of j0 in S 0 is earlier than theompletion time of j in S and the ompletion time of j in S 0 is idential to that of j0 in S. Sinep(j0) < p(j), it follows that the total ost of S 0 is less than that of S, thus yielding a ontradition.We next show that �t(j0) < p(j0) is also impossible. By Lemma 3.4, the optimal shedule is alist shedule. Sine t is the �rst time step that j0 is delayed by j, it follows that j is not sheduledduring the period [r(j0); t � 1℄. If �t(j0) < p(j0), then j0 is sheduled at least one during thisinterval, giving it higher priority over j in the shedule. Sine j is sheduled ahead of j0 at time t,this yields a ontradition to the fat that S is a list shedule.Consider a shedule that minimizes total rounded ost. Sine the rounded ost assigns equal\weights" to all of the jobs in the same group, sheduling within a group in an optimal sheduleminimizes the total ow time of the jobs subjet to onstraints plaed by jobs outside the group.We establish the following lemma by arguing that every shedule that minimizes total ow time isan srpt shedule.Lemma 3.6 For any onstrained instane, every shedule that optimizes rounded ost is srpt-friendly.Proof: Let I be a given onstrained instane and let S be a shedule for I that optimizes roundedost and yet is not srpt-friendly. Fix a group in whih the jobs do not exeute in srpt order. LetG denote the set of jobs in the group. Consider the onstrained sheduling instane I 0, in whih theset of jobs is G and the set of allowable times is exatly the set of times during whih these jobs aresheduled in S. Sine S optimizes rounded ost, it follows that when restrited to the onstrainedinstane I 0, S optimizes total ow time. We now argue that this leads to a ontradition. Ourproof resembles losely the proof of the well-known result that srpt optimizes total ow time forarbitrary (unonstrained) sheduling instanes [2℄.7

Let t be the earliest time instant when S shedules a job j 2 G, while a job j0 2 G with lowerremaining proessing time is in the queue at time t (i.e., �t(j0) < �t(j)). By our assumption thatS is not srpt-friendly, suh a time instant exists. Let T denote the set of time intervals duringthe period [t;1) when either job j or job j0 is sheduled in S. Thus, the total length of T equals�t(j0)+�t(j). Consider the shedule S 0 whih is idential to S exept that during T , we ompletelyshedule the remainder of j (whih equals �t(j0)) and then the remainder of j0 (whih equals �t(j)).Sine �t(j0) < �t(j), it follows that the ompletion time of j0 in S 0 is less than the ompletion timeof j in S, while the ompletion time of j in S 0 is at most the ompletion time of j0 in S. Sinethe total ow time is the sum of ompletion times minus the sum of release times, it follows thatshedule S 0 has a smaller total ow time than S for instane I 0, yielding a ontradition. Thedesired laim follows.3.3 Eliminating delays of small jobs by larger jobsIn this setion, we prove Lemma 3.1. Given a onstrained instane I and a natural srpt-friendlylist shedule S for I, we derive a natural srpt-friendly list shedule in whih no job in superbloki delays any job in superblok j for j < i, while inurring a ost inrease by a fator of at most(1 + 2").Let m denote the largest group index in I suh that a job in group m delays a job in superblokspr(m)�1 or lower. (Reall that spr(m) is the superblok to whih group m belongs.) We desribea sweep proedure by whih we onvert S into a new natural srpt-friendly list shedule in whih nojob in group m delays any job in superblok spr(m)� 1 or lower. The sweep proedure onsists ofthe repeated appliation of a loal reordering proedure whih ensures that a partiular job in groupm does not delay any job in superblok spr(m) � 1 or lower; this job is the �rst job in group mthat delays some job in superblok spr(m)� 1 or lower, aording to shedule S. We �rst desribethe loal reordering proedure and then the sweep proedure.Loal reordering. Let t be the earliest instant at whih a job j in group m delays a job insuperblok spr(m) � 1 or lower. Let t0 be the earliest time step after t at whih there are no jobsfrom superblok spr(m) � 1 or lower in the queue. We now laim that at every time step in theinterval [t; t0 � 1℄, either j or some job in superblok spr(m) � 1 or lower is exeuted. The proofis by ontradition. Let t1 be the earliest time in [t; t0 � 1℄ at whih a job other than j, say j1,belonging to superblok spr(m) or higher is exeuted. We show that �t1(j1) � minfp(j1); p(j)g.We onsider di�erent ases:� r(j1) > t: This implies that j1 is exeuted for the �rst time at time t1; that is, �t1(j1) = p(j1).� r(j1) � t, p(j1) < p(j): Sine j delays j1 at time t and S is natural, it follows that �t(j1) =p(j1). This implies that j1 is exeuted for the �rst time at time t1; thus, �t1(j1) = p(j1).� r(j1) � t; p(j1) � p(j): Sine no job in a group higher than m delays any job in superblokspr(m)�1 or lower, we obtain in this ase that j1 is in group m. Sine S is a list shedule andj is sheduled at time t, it follows that during the interval [r(j); t� 1℄, j1 is not sheduled. Ifr(j) � r(j1), then sine S is srpt-friendly, it follows that �t(j1) = �r(j)(j1) � p(j). On theother hand, if r(j) � r(j1), then j1 has not been sheduled until time t, whih implies that�t(j1) = p(j1) � p(j). Sine t1 is the �rst time in the interval [t; t0 � 1℄ that j1 is sheduled,it follows that �t1(j1) = �t(j1) � p(j).For eah of the above (exhaustive) ases, we have shown that �t1(j1) � minfp(j1); p(j)g. Sine t1is in [t; t0� 1℄, it follows from our hoie of t0 that there exists at least one job j2 from superblok i,8

i < spr(m), in the queue at time t1. We thus have a job j1 in superblok spr(m) delaying a job j1in a superblok i, i < spr(m), even though the remaining proessing time of j1 at time t1 is greaterthan that of j2. Formally, we have �t1(j2) � p(j2) < minfp(j); p(j1)g � �t1(j1). This ontraditsour assumption that S is a natural shedule.We next observe that sine S is a list shedule and j delays some job in superblok spr(m)� 1or lower at time t, j ompletes before time t0. Let J denote the set of jobs other than j that areexeuted in the interval [t; t0 � 1℄. We modify the shedule so that j is given a priority lower thanany job in J , and the jobs in J are sheduled aording to an optimal srpt-friendly, natural listshedule within [t; t0℄. Let S 0 denote the new shedule obtained. We refer to this proedure as thereordering proedure, and write S 0 = R(S). We also all J the set of promoted jobs. Note that inS 0, the total rounded streth of the jobs in J is at most that in S, while the ompletion time of jis at most t0. Therefore, the inrease in rounded ost is at most Pj02J p(j0)=p(j).Lemma 3.7 The shedule S 0 is an srpt-friendly natural list shedule.Proof: We �rst argue that the shedule S 0 is a list shedule. The ompletion time order for Sonsists of a sequene J1, followed by j, followed by a permutation � of the jobs in J , followedby another sequene J2. Instead, the ompletion time order for S 0 onsists of J1, followed by apermutation �0 of the jobs in J , followed by j, followed by another sequene J2. It is easy to seethat the jobs are exeuted in the same priority order. Therefore, S 0 is a list shedule.We next argue that the shedule S 0 is an srpt-friendly shedule. The only jobs that aresheduled di�erently in S 0 than in S are in the set J [fjg. Consider job j. Sine j is the �rst jobin group m to omplete after time t in S, it follows that the proessing within group m is donein srpt order in S 0. All of the jobs in J are ompletely exeuted in the interval [t; t0℄ and theirsheduling is srpt-friendly by onstrution. Therefore S 0 is srpt-friendly.We �nally argue that S 0 is a natural shedule. Sine S is a natural shedule and S 0 di�ersfrom S only in the jobs sheduled during the interval [t; t0 � 1℄, we need to onsider the exeutionsperformed under S 0 during the interval [t; t0 � 1℄ only. Let t1 be any time instant in [t; t0 � 1℄. Weonsider two ases.� Case 1: Job j is sheduled at time t1 in S 0. Consider a job j1 in the queue at time t1. Weneed to argue that if p(j1) < p(j), then �t1(j) < �t1(j1) = p(j1). Suppose that p(j1) < p(j).By onstrution of S 0, j1 is not from superblok spr(m) � 1 or lower. Sine j is the solejob in superblok spr(m) or higher that is sheduled in S 0 during the interval [t; t0 � 1℄,�t1(j1) = �t(j1). Sine S is a natural shedule and S 0 is the same as S outside of the interval[t; t0�1℄, we have �t(j1) = p(j1); this is beause j delays j1 at time t in shedule S. Therefore,�t1(j1) = p(j1), thus ompleting this ase.� Case 2: Job j0 2 J is sheduled at time t1 in S 0. The only jobs of smaller proessing timethat j0 delays in S 0 belong to J . By the onstrution of S 0, the shedule restrited to the jobsin J is natural, thus ompleting this ase.The above two ases establish that S 0 is a natural shedule, thus ompleting the proof of the lemma.In shedule S 0, no job in group m delays a job in superblok 0 through spr(m)� 1 during thetime interval [0; t0 � 1℄. Furthermore, S 0 shares the property of S that no job in group m + 1 orhigher delays any job in a lower indexed superblok.Sweep. We repeat the above transformation proedure with the shedule S 0 whih, by Lemma 3.7,is an srpt-friendly natural list shedule, and ontinue until every job in group m delays no job9

in superblok spr(m) � 1 or lower. Let S = S0;S1 = R(S0); : : : ;Sk = R(Sk�1); : : : ;S` denote thesequene of transformations in the sweep proedure, and let J0 = J; J1; : : : ; Jk; : : : ; J`�1 denote thesets of promoted jobs in eah transformation. By the de�nition of the reordering proess, the setsJk are all disjoint. From the ost analysis of the reordering proedure, it follows that the inreasein ost as a result of the transformation from Sk to Sk+1 is at most the ratio of the sum of theproessing times of the jobs in Jk to (1 + ")m. Therefore, the inrease in ost due to the sweepproedure is at most `�1Xk=0 Xj02Jk p(j0)(1 + ")m � Xs<spr(m) Xi2grps(s) ni(1 + ")m�i�1 (1)where ni is the number of jobs in group i. The inequality follows from the following observations:(a) the set [kJk ontains jobs from superbloks 0 through spr(m)� 1 only; and (b) the proessingtime of a job in group i is at most (1 + ")i+1.The shedule S` obtained as a result of the sweep proedure is a natural srpt-friendly listshedule and has the property that no job in groups m or higher delay any job in a lower indexedsuperblok. We now use the sweep proedure to onvert a natural srpt-friendly list sheduleinto another natural srpt-friendly list shedule in whih no job in superblok i delays any job insuperblok j < i, for any i, while inurring an inrease in ost by a fator of at most 1 + 2".1. Let m denote the highest indexed group suh that a job in group m delays a job in superblokspr(m) � 1 or lower in S. We apply the sweep proedure desribed above to obtain a newsrpt-friendly natural list shedule bS in whih no job in groupm delays any job in superbloksspr(m)� 1 or lower.2. We set S to bS and repeat step 1.By repeated appliation of Lemma 3.7, it follows that the �nal shedule obtained is a natural srpt-friendly list shedule. Furthermore, it is hierarhial; that is, no job delays a job that is in a lowerindexed superblok.We now alulate an upper bound on the inrease in ost due to the above proedure. Let m�denote the largest group index. Let s� denote the largest superblok index. We need to sum up theterm in Equation 1 over all the groups exept those that belong to superblok 0. Let mk denotethe number of jobs in blok k. We bound the total inrease in ost as follows:

10

Xs0>0 X`2grps(s0)Xs<s0 Xi2grps(s) ni(1 + ")`�i�1= Xs<s� Xi2grps(s)Xs0>s X`2grps(s0) ni(1 + ")`�i�1= Xs<s� Xi2grps(s) m�X`=(b+s="2)g ni(1 + ")`�i�1� Xs<s� Xi2grps(s) ni"(1 + ")(b+s="2)g�i�1� s��1Xs=0 240� Xi:blk(i)=b+s="2�1 ni"(1 + ")(b+s="2)g�i�11A+ Xk<b+s="2�1;k2blks(s)0� Xi:blk(i)=k ni"(1 + ")g�11A35� s��1Xs=0 240� Xi:blk(i)=b+s="2�1 ni" 1A+ Xk<b+s="2�1;k2blks(s)0� Xi:blk(i)=k ni"(1 + ")g�11A35� s��1Xs=0 24mb+s="2�1(1 + ")2" + Xk<b+s="2�1;k2blks(s)(1 + ")mk"35� 2n(1 + ")"� 3n";for " > 0 suÆiently small. (To obtain the seond line, we hange the order of summations andnote that summing over s0 > 0 and s < s0 is idential to summing over s < s� and s0 > s. The thirdline follows from the fat that the �rst group index in superblok s+1 is (b+ s="2)g. In the fourthline, we use the inequalityPi�0 1=(1+ ")i � 1=". In the �fth line, we separate the summation overgroups in superblok s to two summations, one over groups in the last blok in superblok s, andthe other over groups in the remaining bloks in superblok s. In the last step, we use the fat thatthe number of jobs in the largest numbered bloks of all of the superbloks is at most n"2.)Sine the rounded streth of any job is at least 1, the total rounded streth of any shedule isat least n. Thus, the inrease in ost as a result of the transformation is at most by a fator of(1 + 3"). This ompletes the proof of Lemma 3.1.3.4 Bounding the number of smaller jobs delayed by a jobIn this setion, we prove Lemma 3.2. Let S be the given natural list shedule for a given onstrainedinstane I. Let m be the largest group number in S and let j denote the lone job from group min S. Let be a given positive integer. The goal is to determine a list shedule S 0 for I of ostat most (1 + 1=) times the ost of S suh that j delays no more than jobs in S 0 with smallerproessing time than j.Let t denote the earliest time step at whih j delays more than jobs with smaller proessingtime. Let t0 denote the earliest time step after t in whih there are exatly jobs smaller than j inthe queue. Thus, at least one of the jobs that are delayed by j at time t omplete at or beforetime t0. Sine S is a list shedule, we obtain that j ompletes before time t0. Let J denote the setof jobs smaller than j that are in the queue at time t0. We laim that none of the jobs in J issheduled until time t0. The proof is by ontradition. Let j0 be a job in J that is exeuted at time11

t1 prior to t0. We �rst argue that t1 > t. If r(j0) > t, then the preeding laim is trivial; otherwise,sine S is a natural shedule and j delays j0 at time t, �t(j0) = p(j0), thus implying that t1 > t.Sine j0 is exeuted at time t1 2 (t; t0), at time t1 there are greater than jobs in the queue that aresmaller than j. Sine j0 is still in the queue at time t0, the remaining at least jobs smaller thanj in the queue at time t1 should also be in the queue at time t0 beause S is a list shedule. Butthere are only jobs in the queue at time t0 that are smaller than j, thus yielding a ontradition.It follows that all of the jobs that are sheduled during the interval [t; t0� 1℄ omplete prior to timet0. We modify the shedule S to derive shedule S 0 as follows. During the interval [t; t0 � 1℄, weassign a priority to j higher than all jobs in J and lower than all other jobs. Subjet to thisonstraint, we derive the best shedule for the remaining jobs that omplete during the interval[t; t0 � 1℄ in S. First, sine S 0 is obtained by merely resheduling the proessing performed duringthe interval [t; t0 � 1℄, it follows that all of the jobs, inluding j, that are sheduled in S 0 duringthe interval [t; t0 � 1℄ omplete prior to time t0. Sine j has least priority among these jobs, theinrease in rounded ost as a result of the transformation from S to S 0 is at most (t0� t)=(1 + ")m.In shedule S, there are at least jobs in groups m� 1 or lower at eah instant in [t; t0 � 1℄. Thus,the rounded ost of S is at least (t0 � t)=(1 + ")m�1. Therefore, the rounded ost of S 0 is at most(1 + 1=) times the rounded ost of S.We note that the resultant shedule obtained may not be a list shedule. We onvert S 0 into alist shedule L(S 0) by assigning priorities to eah job aording to their ompletion times. In thefollowing lemma, we argue that the rounded ost of shedule L(S 0) is at most that of S 0. We alsoshow that the number of jobs delayed by j does not inrease; hene, it remains at most . Thisompletes the proof of Lemma 3.2.Lemma 3.8 Let S be a shedule for a given onstrained instane and let L(S) denote a list sheduleobtained by sheduling every job in the onstrained instane in order of their ompletion times inS. The rounded ost of L(S) is at most that of S. Furthermore, the number of jobs delayed by ajob j in L(S) is at most the number of jobs delayed by j in S.Proof: Suppose the jobs omplete in S in the order j1, j2, . . . , j`, where ` is the number of jobsin the given instane. We laim that for 1 � i � ` and any time t, the total amount of time duringthe interval [0; t℄ that the jobs j1 through ji are sheduled in L(S) is at least the orrespondingtime in S. This is beause for any i and any available time instant, a job in the set fj1; : : : ; j`g issheduled in L(S) at time t if it has been released and not yet omplete. Applying the preedinglaim indutively in the order j1 through j`, we obtain that the ompletion time of any job j inL(S) is at most that in S. Sine the rounded streth of a job is the ratio of the di�erene betweenthe ompletion time and the release time to the rounded proessing time, the rounded ost of theshedule L(S) is at most that of S. This ompletes the proof of the �rst part of the lemma.For the seond part of the lemma, it is enough to observe that the priority order among thejobs in shedule L(S) implies that a job j an never delay a job that ompletes earlier than j in S.Furthermore, if in L(S) j delays a job j0 that ompletes later than j in S, then the release time ofj0 is before the ompletion time of j in S, implying that j delays j0 in S. Thus, the number of jobsthat j delays in L(S) is at most the number of jobs that j delays in S.3.5 An approximation algorithm for a onstant number of groupsThe �nal step of the algorithm is a polynomial-time approximation algorithm for any onstrainedsheduling problem with a onstant number of groups. More preisely, we give an nO(k=Æ)-time12

algorithm to determine a (1 + Æ)k-approximate shedule for an instane with k groups, for anypositive real Æ. Without loss of generality, we assume that 1=Æ is an integer.Our algorithm is based on enumerating shedules of interest and seleting the shedule of leastrounded ost. Given a shedule, the rounded ost of the shedule an be alulated in O(n) time.Therefore, the algorithm an be desribed by speifying the shedules that are enumerated andtheir number. Our algorithm is reursive, and we develop an indutive proof of its orretnessalong with the algorithm desription. We show, by indution on the number of groups, that ouralgorithm enumerates O(nk=Æ+k) shedules for an instane with k groups, at least one of whih is(1 + Æ)k-approximate.Base ase. The base ase is when k = 1. In this ase, our algorithm returns an srpt shedule.We �rst argue that every srpt shedule has the same rounded ost. We note that the multiset ofremaining proessing times of all jobs at any time in any two srpt shedules is idential sine anysrpt shedule derements the remaining proessing time of a job with least remaining proessingtime in eah step. It thus follows that the multisets of ompletion times of the jobs in any two srptshedules are idential. The rounded ost is the di�erene of the sum of the weighted ompletiontimes and the sum of the weighted release times, where the weight is equal to the reiproal ofthe rounded job size. Sine all the jobs belong to the same group, they have the same weight,implying that the sum of the weighted ompletion times and the sum of the weighted release timesare, respetively, the same for any two srpt shedules. Thus, every srpt shedule has the samerounded ost.By Lemma 3.6, every optimal shedule is an srpt-friendly shedule. Sine the instane has onegroup only, every srpt-friendly shedule is an srpt shedule. Sine all srpt shedules have thesame rounded ost, it follows that every srpt shedule is optimal, thus establishing the orretnessof the algorithm for this ase.Reursive ase. Suppose we have an instane with k groups. Without loss of generality, we mayassume that the k groups are numbered 0 through k � 1. By Lemmas 3.4, 3.5, and 3.6, we knowthat there exists an srpt-friendly natural list shedule that has optimal rounded ost. The overallstruture of the reursion step is as follows. (We present the formal details below.)1. Division: Divide the given onstrained instane into a sequene of onstrained instanesfIig, in eah of whih there is exatly one job from the largest numbered group.2. Enumeration: For eah instane Ii, determine a set Ci of O(n1=Æ) onstrained instanesthat onsist of jobs from groups 0 through k� 2, by enumerating O(n1=Æ) di�erent shedulesfor the lone job in group k � 1.3. Reursion: For eah i and for eah onstrained instane in Ci, we reursively determinea (1 + Æ)k�1-approximate shedule. Eah shedule thus obtained determines a andidateshedule for Ii. We selet the best shedule among the O(n1=Æ) andidate shedules as theshedule for Ii. The shedule for the instane I is obtained by merging the shedules obtainedfor Ii, for all i.Before desribing the division step, we introdue some notation and a supporting laim. Let Jdenote the set of jobs in the largest indexed group k� 1, and let ` denote the number of these jobs.We �rst determine the order in whih these jobs �nish in an optimal shedule. This will enable usto split the given sheduling instane I into ` onstrained sheduling instanes I1, I2, . . . , I` suhthat eah instane ontains exatly one job from J . In order to determine the order of ompletionof the jobs in J we use the fat that the optimal shedule is natural and srpt-friendly. The order13

of ompletion of jobs in J is the same as that in whih the jobs omplete assuming that the jobsin J are sheduled in srpt order and every job in J has lower priority than any job in groups 0through k � 2. We refer to suh a shedule as a groupwise shedule. Let the ompletion order ofjobs in J be j1, j2, . . . , j`. For 1 � i � `, let ti denote the ompletion time of job ji in the groupwiseshedule. For onveniene, we set t0 = 0.Lemma 3.9 The order of ompletion of jobs in J in an optimal shedule is idential to that in agroupwise shedule.Proof: Let �1t (j) (resp., �2t (j)) denote the remaining proessing time of job j at time t undera given optimal shedule (resp., groupwise shedule). We laim that for any job j 2 J and any0 � i � `, �1ti(j) = �2ti(j). Before proving this laim, we argue that the statement of the lemmafollows from the laim. To see this, note that (a) job ji ompletes in the groupwise shedule attime ti and �2ti�1(ji) > 0; (b) ji ompletes in the optimal shedule at the earliest time t at whih�1t (ji) = 0. Aording to our laim, �1ti�1(ji) > 0 while �1ti(ji) = 0; therefore, ji ompletes at sometime in the interval (ti�1; ti℄. The statement of the lemma follows.We now prove the laim in the preeding paragraph. The proof is by indution on i. For thebase ase, we set i = 0. At time t0 = 0, the remaining proessing time of eah job in the groupwiseshedule is idential to that in the optimal shedule; so the desired laim holds. We now onsiderthe indution step i > 0. For the indution hypothesis, we assume that �1ti(j) = �2ti(j) for all j 2 J .We onsider two ases for the indution step. The �rst ase is when there does not exist any timet in [ti�1; ti � 1℄ when one shedule proesses a job in J while the other proesses a job not in J .In this ase, the indution hypothesis diretly implies the indution step.For the seond ase, we assume that there exists a time in [ti�1; ti � 1℄ when one sheduleproesses a job in J while the other proesses a job not in J . Let t be the earliest suh time.The indution hypothesis implies that the total work done on jobs outside J in both shedules isthe same until time t. Sine the groupwise shedule assigns lower priority to all jobs in J whenompared to any job not in J , it follows that at time t the groupwise shedule proesses a job not inJ (i.e., in one of groups 0 through k�2), while the optimal shedule proesses a job j 2 J . We nowlaim that j is the �rst job in J to omplete after time t in both the shedules (and hene, j = ji).By the indution hypothesis, the hoie of t and the fat that the jobs in J are proessed in srptorder by both the shedules (assuming that ties in the srpt order are broken the same way), theremaining proessing time of ji at time t is the same in both shedules. Sine the optimal sheduleis natural, this remaining proessing time is less than (1 + ")k�1, in both shedules. This impliesthat �j(t) in both the shedules is less than the proessing time of any job in J that is released aftertime t. Furthermore, the remaining proessing time of every job in the set S = fji+1; : : : ; j`g attime t is at least (1+ ")k�1; this is beause otherwise there exists some other job jr, r > i, that hasremaining proessing time less than (1 + ")k�1 at time r(ji), implying that jr should have higherpriority than ji in the srpt order, thus yielding a ontradition. Sine the jobs in J are proessedin srpt order in both shedules, it follows that both the shedules assign lower priority to the jobsin the set S = fji+1; : : : ; j`g, when ompared with the jobs outside S. Thus, in both shedules,ji is the job from J that will omplete next. Furthermore, in both shedules, no job from the setfji+1; : : : ; j`g will be proessed until the �rst time after t when there is no job outside of S; thistime is the same in both the shedules and equals ti. Therefore, we have �1ti(jr) = �2ti(jr) = 0 forr � i and �1ti(jr) = �2ti(jr) = �1t (jr) = �2t (jr), for r > i. This ompletes the proof of the indutionstep, and hene the laim.Division. The order of ompletion of the jobs in J an be used to split the optimal shedule into` parts. The �rst part begins at time 0 and ends at time t1. We break the given instane I into14

two onstrained instanes I1 and I 0 as follows. Let the set S1 onsist of j1 and all jobs in groups 0through k � 2 that arrive in the interval [0; t1 � 1℄. We note that all of these jobs omplete bothin the groupwise shedule and in the optimal shedule during the interval [0; t1℄. Furthermore, inboth shedules, jobs in J �fj1g are exeuted in srpt order and are given lower priority than everyjob in S1. We set instane I1 to be the set S1 of jobs and their release times. We set instane I 0 tobe the remainder of the jobs with their release times subjet to the forbidden times imposed by thejobs of instane I1. We note that the set of time periods during whih the jobs of instane I1 aresheduled are independent of the partiular shedule used for I1; hene, the onstrained instaneI 0 is well-de�ned.By onstrution, the instanes I1 and I 0 onsist of disjoint sets of jobs and time periods forproessing jobs. Given a shedule S1 for I1 and a shedule S 0 for I 0, we obtain a shedule S for I bysimply merging the two shedules. That is, a job is sheduled at time t in S if it is sheduled at timet in exatly one of S1 or S 0. The rounded ost of S is the sum of the rounded osts of S1 and S 0.Furthermore, the instanes I1 and I 0 have been de�ned suh that the given optimal shedule anbe split into two disjoint shedules, one for I1 and the other for I 0. Therefore, an optimal shedulefor S an be obtained by determining optimal shedules for both I1 and I 0 and then merging them.Similarly, for any � � 1, an �-approximate shedule for I1 and an �-approximate shedule for I 0yields an �-approximate shedule for I.The division step onsists of repeating the above splitting iteratively to obtain a series ofonstrained instanes I1 through I` suh that in any instane Ii, we have exatly one job from J(and hene group k� 1). By the argument in the preeding paragraph, an �-approximate shedulefor I an be obtained by merging together �-approximate shedules for eah Ii, 1 � i � `. Theenumeration and reursion steps show how to obtain a (1 + Æ)k-approximate list shedule for anyonstrained instane that ontains exatly one job from group k � 1.Enumeration. Consider onstrained instane Ii. The job ji is the lone job of group k � 1 that isin instane Ii. By Lemma 3.2, any natural list shedule for Ii an be onverted into a list shedulein whih ji does not delay more than 1=Æ smaller jobs, while inreasing the ost by a fator of atmost 1 + Æ. Sine there exists a natural list shedule with optimal rounded ost, it follows thatthere exists a list shedule with ost at most 1+Æ times the optimal rounded ost, in whih j delaysno more than 1=Æ smaller jobs.We now ompute a (1 + Æ)k-approximate shedule for the instane Ii by omputing a shedulethat is (1 + Æ)k�1-approximate among all shedules in whih ji delays no more than 1=Æ smallerjobs. We stipulate that ji delays at most 1=Æ jobs in groups 0 through k � 2. There are thus atmost 1Æ � n1=Æ� = O(n1=Æ) seletions for the set of jobs that may be delayed by ji. Eah suh seletionidenti�es a set X of size at most 1=Æ. Every list shedule for Ii, whih assigns a priority to ji higherthan any job in X and lower than any other job, proesses ji at exatly the same time periods.Thus, the set X ompletely determines the time periods at whih ji is proessed in any shedulefor Ii that obeys the onstraint that ji may not delay any job outside X. For eah seletion ofX, we determine the times at whih ji is proessed. We then alulate two onstrained instanesontaining jobs from groups 0 through k � 2 only. The �rst instane inludes jobs that do not getdelayed by ji and omplete before the ompletion of that job. The seond instane onsists of thejobs that get delayed and the jobs that arrive after the ompletion of ji. All of the time steps priorto this ompletion an be marked as forbidden for the seond instane.For a given �, if we obtain �-approximate shedules for eah of the two onstrained instanesde�ned above, then we an merge the two shedules to obtain a shedule for Ii that is �-approximateamong all shedules in whih ji does not delay any job outside ofX. This ompletes the enumerationstep. 15

Reursion. By the indution hypothesis we know that for any onstrained instane with n jobs andat most s < k groups, our algorithm enumerates O(ns=Æ+s) shedules and determines a (1 + Æ)s-approximate shedule. Thus, (1 + Æ)k�1-approximate shedules for all of the O(n1=Æ) instanesobtained in the enumeration step, for all Ii, an be omputed by enumerating n(k�1)=Æ+k�1 shedulesand seleting the one with smallest ost. Thus, the total number of shedules enumerated followingthe reursion is O(n1=Æ) � ` �O(n(k�1)=Æ+k�1) = O(nkÆ+k). And the approximation fator is at most(1 + Æ)k. This ompletes the indution step and the proof of Lemma 3.3.4 Rounding of job sizesIn this setion, we study the impat of inomplete knowledge of job sizes on streth and ow metris.We �rst onsider a natural variant of srpt, in whih jobs are sheduled aording to the roundedvalues of their remaining proessing times, rather than the remaining proessing times. This lassof algorithms, whih we refer to as �-srpt, is analyzed in Setion 4.1.The algorithms studied in Setion 4.1 rely on partial knowledge of the remaining proessingtime of eah job at eah step. A more realisti model for studying inomplete knowledge of jobsizes is a relaxation of the non-lairvoyant model in whih the total proessing time of any job isknown to within a onstant fator only at the time of the release of the job. Setion 4.2 analyzes�-spt, a variant of spt, under this model.4.1 Analysis of �-srptReall that in eah step, srpt shedules a job that has the least remaining proessing time. Ineah step of �-srpt, we shedule a job whose remaining proessing time is within a (1 + �) fatorof that of the job with the least remaining proessing time. More formally, at any step, the jobsare divided into groups as follows: a job j is in group i at time t if �t(j) 2 [(1 + �)i; (1 + �)i+1).(Reall that �t(j) is the remaining proessing time of j at time t.) At any step t, �-srpt shedulesa job from the smallest numbered group that is nonempty. (Note that �-srpt, with � ! 0, is thesame as srpt.)The two main results in this setion onern the performane of �-srpt with respet to theaverage ow and average streth metris. We �rst show that �-srpt is O(1)-ompetitive withrespet to average streth, for onstant � > 0. With respet to average ow, however, we showthat an adversarial mehanism of breaking ties among jobs in the same group leads to an
(log�)-ompetitive ratio. (Reall that � is the ratio of the maximum proessing time to the minimumproessing time among all jobs in the given instane.) This is a surprising departure from the trueoptimality of srpt for average ow. We �nally present a spei� tie-breaking mehanism and showthat the resulting re�nement of �-srpt ahieves an O(1) ompetitive ratio for average ow, andthus is simultaneously ompetitive for the average ow and streth metris.Our analysis of �-srpt proeeds by omparing the state of the queue in �-srpt with the stateof the queue in any other shedule, say S. Let St(i) (resp., S0t(i)) denote the set of jobs in group iat time t in the �-srpt shedule (resp., S). Let Nt(i) (resp., N 0t(i)) denote the number of jobs inSt(i) (resp., S0t(i)). For a given set of jobs, we refer to the sum of the remaining proessing timesof the jobs in the set at time t as the volume of the set at time t. Let Vt(i) (resp., V 0t (i)) denotethe volume of jobs in St(i) (resp., S0t(i)) at time t. We note that the total ow of a shedule issimply the sum, over all time steps t, of the number of jobs in the queue at time t. In partiular,the total ow of the �-srpt shedule equalsPtPk�0Nt(k). Similar to total ow, the total strethof a shedule an be alulated as the sum, over all time steps t, of the sum of the reiproals ofthe proessing times of the jobs in the queue at time t.16

Before presenting the analysis in detail, we provide a brief overview. We �rst bound, inLemma 4.1, the pre�x sum of the group volumes in the �-srpt shedule in terms of the orre-sponding pre�x sum in S. This enables us to argue that the number of jobs in groups 0 throughi at any time t in the �-srpt shedule is not muh more than the orresponding number in anyother shedule (Lemma 4.2). More preisely, the pre�x sum of the group sizes in �-srpt di�ersfrom the orresponding pre�x sum for any other shedule by only a onstant number per group.This laim almost diretly yields an upper bound on the ompetitive ratio of �-srpt with respetto average ow (see Theorem 3). For the average streth analysis, we need to do more. By applyinga simple algebrai inequality (Lemma A.1), one an show that a omparison of the pre�x sums ofgroup sizes leads to a similar omparison of the sums of the reiproals of the remaining proessingtimes. To establish the �nal result, we have to overome two hurdles. First, streth orrespondsto the reiproals of the proessing times, not remaining proessing times. Seond, the preedingargument based on pre�x sums does not aount for the streth ontributions of a onstant numberof jobs per group (whih are not inluded in the pre�x sums alulated in Lemma 4.2). Thesehurdles are addressed in the �nal proof in Theorem 2.Lemma 4.1 For all times t and groups i, we have Pk�i Vt(k) �Pk�i V 0t (k) + (1 + �)i+1.Proof: The proof is by indution on t. For the indution base, we set t = 0. Sine the volumeof jobs in the queue at time 0 is independent of the partiular shedule, the desired laim holdstrivially. We now onsider the indution step t > 0. We �rst note that the arrival of new jobs inthe system ontributes exatly the same amount to both sides of the desired inequality. We nowonsider the sheduling of the jobs. Algorithm �-srpt exeutes one unit from a job residing in thesmallest group. That is, if Pk�i Vt(k) > 0, it dereases by 1. Sine at most one unit of any jobmay be exeuted in the shedule S, it follows from the indution hypothesis that ifPk�i Vt(k) > 0,then Pk�i Vt+1(k) � Pk�i V 0t (k) + (1 + �)i+1. If Pk�i Vt(k) = 0 even after the addition of newjobs in the system, then it is possible that Pk�i Vt+1(k) > 0 if a job in group i+ 1 at time t getsexeuted in time t and lands in group i. In this event, Pk�i Vt+1(k) � (1+ �)i+1, whih is at mostPk�i V 0t+1(k) + (1 + �)i+1. This ompletes the indution step and the proof of the lemma.Lemma 4.2 For all i, there is a subset Tt(i) of St(i) and orresponding integer Mt(i) = jTt(i)j andvolume Wt(i), suh that the following inequalities hold.Mt(i) � d1 + �e; for all i (2)Xk�i (Nt(k)�Mt(k)) � (1 + �)Xk�i N 0t(k) (3)Xk�iWt(k) � 2(1 + �)i+1 (4)Furthermore, the job that is proessed by �-srpt at time t is inluded in the set [i�0Tt(i).Proof: We establish Equations 2 through 4 by indution on i. For onveniene, we set Tt(�1) =St(�1) = ; and Nt(�1) = Mt(�1) = N 0t(�1) = Wt(�1) = 0. For the indution basis, we onsideri = �1. The laim holds diretly by the preeding settings.We now establish the indution step. For the indution hypothesis, we assume the two equationsto hold for all indies less than i. We now onsider the equations for a given i � 0. If St(i) isempty, then we set Tt(i) to be empty, and the three equations for the indution step follow from theindution hypothesis. Otherwise, we let Tt(i) be any subset of St(i) that satis�es two onditions:17

(a) Pk�iWt(k) is at least (1 + �)i+1; (b) if the group i is the least numbered nonempty group andhene ontains the job that will be proessed by �-srpt, then we ensure that Tt(0) ontains thejob. Condition (b) guarantees the last laim in the statement of the lemma. If ondition (a) is notsatis�ed, then we set Tt(i) to be St(i).Sine eah job in Tt(i) has volume at least (1 + �)i, Equation 2 holds. Sine eah job in Tt(i)has volume less than (1 + �)i+1, it follows that Pk�iWt(k) has volume at most 2(1 + �)i+1, thusestablishing Equation 4. For Equation 3, we onsider two ases. If Tt(i) = St(i), then the equationfollows from Equation 3 of the indution hypothesis. Otherwise, we have Pk�iWt(k) � (1+�)i+1,and we deriveXk�i(Nt(k)�Mt(k))(1 + �)k � 0�Xk�i Vt(k)1A�0�Xk�iWt(k)1A� 0�Xk�i V 0t (k)1A+ (1 + �)i+1 �0�Xk�iWt(k)1A� Xk�i V 0t (k)(For the �rst step, we note that the volume of the jobs in St(k)�Tt(k), whih equals Vt(k)�Wt(k),is at least Pk�i(Nt(k)�Mt(k))(1 + �)k. The seond step follows from Lemma 4.1.)We thus have the following equation.Xk�i(Nt(k)�Mt(k))(1 + �)k �Xk�i N 0t(k)(1 + �)k+1 (5)We invoke Lemma A.1, with ak = (Nt(k)�Mt(k))(1+�)k, bk = N 0t(k)(1+�)k+1, and � = 1=(1+�)to obtain Equation 3.To bound the streth ontributions of the jobs in the sets Tt(i), we onsider the birth groups ofjobs in the queue, whih we de�ne as follows. Let the birth group of a job be the group that thejob resides in at the time of its release. Thus, the birth group of a job j is blog1+� p(j1). (Notethat the birth group is idential to the notion of group in Setion 3.)Lemma 4.3 There is at most one job in [k�iSt(k) that has birth group greater than i.Proof: The proof is by indution on time. For the base ase, we note that the laim holds triviallyat the start of the shedule. For the indution step, we onsider the queue at the end of a timestep t � 0. Consider the ount on the number of jobs in groups 0 through i, for a given i. The jobsthat are not proessed do not hange this ount. Furthermore, any job that is released at time tbut not proessed also does not hange the ount. Finally, the lone job j that is proessed in stept hanges the ount only if the job moves from group i+ 1 to group i as a result of the derease inremaining proessing time. In this ase, j is the only job in [k�iSt+1(k). This ompletes the proofof the desired laim.The following lemma haraterizes the number of time steps that a job an be delayed by a jobwith a higher birth group.Lemma 4.4 A job j an be delayed by at most one job with higher birth group, and only at a timewhen the group of j is idential to its birth group. Furthermore, the total amount of suh delay fora job with birth group g is at most (1 + �)g+1. 18

Proof: Consider a job j that is released at time t, and arrives into its birth group g. ByLemma 4.3, there is at most one job (say j0) in groups 0 through g at time t that has its birthgroup greater than g. Suppose the job j0 exists. By the de�nition of �-srpt, no job in groups g+1and higher will be exeuted until the ompletion of j. So the only job with birth group higher thang that may delay j is j0. Furthermore, one j moves out of group g, it will never be delayed by j0.This is beause at the instant j moves out, either j0 is in group g or j0 has already been ompleted;in either ase, j will not be delayed by j0 any more. The remaining proessing time of j0 at thetime of release of j is at most (1 + �)g+1. Therefore, the total time that j0 may delay j is at most(1 + �)g+1.We are now ready to establish a onstant-fator upper bound on the ompetitiveness of �-srptwith respet to average streth.Theorem 2 For any onstant � > 0, �-srpt is O(1)-ompetitive with respet to average streth.Proof: Our analysis plaes a bound on the ontribution to the total streth by all the jobs inthe queue of �-srpt at a given time step t by omparing with the shedule that minimizes thetotal streth ontribution at time t. We note that there exists a shedule S suh that S minimizesthe total streth ontribution of jobs at time t and there is no partially exeuted job in S at timet [17℄. This is beause given any shedule that minimizes the total streth ontribution of jobsat time t and does not satisfy the property of having no partially exeuted jobs at time t an beonverted into a shedule that satis�es the desired property by simply not proessing jobs thatremain inomplete at time t. Sine the total streth ontribution at time t is a funtion of only theproessing times of the jobs in the queue at time t and not the remaining proessing times of thejobs in the queue at time t, the laim holds. In the remainder of the proof, we refer to this sheduleas S.We �rst invoke Lemma 4.2 to obtain the subsets Tt(i) and assoiated parameters Mt(i) andWt(i). Consider the ontribution to the total streth by jobs in St(i) � Tt(i), for all i. Thisontribution is at most Pi�0(Nt(i) �Mt(i))=(1 + �)i sine any job in St(i) � Tt(i) has proessingtime at least (1 + �)i. We obtain that the total streth ontribution at time t in shedule S is atleastPi�0N 0t(i)=(1+�)i+1. It thus follows from Equation 3 and Lemma A.1 that the total strethdue to jobs in St(i)� Tt(i), taken over all i and t, is at most (1 + �)2 times the optimal streth.It remains to analyze the streth ontribution due to the jobs in Tt(i), for all i. Let Y denotethe set of all of these jobs. If Y is empty, then there is nothing to prove. If jY j = 1, then byLemma 4.2, the sole job in Y is urrently exeuted by �-srpt. Otherwise, there are at least twojobs in Y . Let j1 denote the job in Y that is being proessed by �-srpt. Thus, j1 is in the lowestnumbered nonempty group. Rank the remaining jobs in Y in nondereasing order of their groupnumber (breaking ties arbitrarily) and let j2 be the �rst job in this list. Let g1 and g2 denote theurrent group of j1 and j2, respetively; thus g1 � g2. Let g01 and g02 denote the birth groups of j1and j2, respetively. We onsider two ases.� Case 1: g01 � g02. In this ase, we have g2 � g01. To see this we note that if g2 < g01, thenwe have two jobs j1 and j2 in the set [k�g2St(k) that have larger birth groups than g2, aontradition to Lemma 4.3. It follows that the ontribution to total streth of all jobs in Y
19

at time t is at most 1p(j1) + Xj2Y;j 6=j1 1�t(j) � 1p(j1) + Xk�g01 Xj2Tt(k) 1�t(j)� 1p(j1) + Xk�g01 Xj2Tt(k) �t(j)(1 + �)2k= 1p(j1) + Xk�g01 Wt(k)(1 + �)2k (6)(For the seond step, we note that for j 2 Tt(k), �t(j) � (1 + �)k.)� Case 2: g01 > g02. In this ase, we have a job j2 being delayed by a job with a higher birthgroup. By Lemma 4.4, g2 is the same as g02. Thus every job other than j1 is in a group thatis at least g2. It follows that the ontribution to total streth of all jobs in Y at time t is atmost 1p(j1) + Xj2Y;j 6=j1 1�j(t) � 1p(j1) + Xk�g02 Xj2Tt(k) 1�t(j)� 1p(j1) + Xk�g02 Xj2Tt(k) �t(j)(1 + �)2k= 1p(j1) + Xk�g02 Wt(k)(1 + �)2k (7)(For the seond step, we note that for j 2 Tt(k), �t(j) � (1 + �)k.)We now show that Pk�g Wt(k)(1+�)2k for any g is at most 2(2 + �)=(1 + �)g. By Equation 4, we knowthat Pk�iWt(k) � 2(1 + �)i+1. The term Pk�g Wt(k)(1+�)2k is maximal whenWt(g) = 2(1 + �)i+1;and for i > g, Wt(i) = 2(1 + �)i+1 � Xg�k<iWt(k) = 2�(1 + �)i:For a formal proof of the underlying laim, whih relies on elementary algebrai manipulations, werefer the reader to [16, Lemma 4.2℄. We thus obtain the following inequality:Xk�g Wt(k)(1 + �)2k � 2(1 + �)g+1(1 + �)2g +Xk>g 2�(1 + �)k(1 + �)2k= 2(1 + �)g�1 +Xk>g 2�(1 + �)k� 2(1 + �)g�1 + 2(1 + �)g= 2(2 + �)(1 + �)g :20

We now substitute the above inequality in Equations 6 and 7 with g = g01 and g = g02, respetively.Sine p(j1) � (1 + �)g01+1 and p(j2) � (1 + �)g02+1, we obtain that the total streth ontribution ofjobs in Y at time t is at most the sum of two terms: (a) the reiproal of the proessing time ofthe job that is being proessed; (b) 2(2 + �)(1 + �) times the reiproal of the proessing time of ajob that is either being proessed or is being delayed by a job with higher birth group. The totalstreth ontribution, over time, of the job urrently being exeuted is at most n. By Lemma 4.4,the total streth ontribution of the jobs that are delayed by a job with higher birth group is atmost (1 + �)n. It follows that the ontribution of the jobs in Y is at most n+ 2n(1 + �)2(2 + �).Let the optimal total streth be S�. The total streth ahieved by �-srpt is at most ((1 +�)2S� + 2n(1 + �)2(2 + �) + n. Sine S� � n, we obtain an O(1) ompetitive ratio for onstant� > 0.We now show that �-srpt is �(log�)-ompetitive with respet to average ow time.Theorem 3 Let � be the ratio of the maximum proessing time to the minimum proessing time.Algorithm �-srpt is O(� log1+��)-ompetitive with respet to average ow. Furthermore, for� � 1, there exists an instane for whih the average ow of �-srpt is
(�(log1+��)=(1+ln(1=�)))times optimal.Proof: We onsider the upper bound �rst. By Equations 2 and 3, we obtain the followinginequality for all i and t:Xk�i Nt(k) � (1 + �)Xk�iN 0t(k) + d�+ 1e(i + 1): (8)Sine the maximum number of groups is dlog1+��e, setting i = dlog1+��e in Equation 8 yieldsthatPk�iNt(k) is at most (1+�)Pk�iN 0t(k) plusO(� log1+��). Sine �-srpt is work-onserving,it follows that if there is at least one job in the queue of �-srpt at time t, then there is at leastone job in the queue of any other sheduling algorithm at time t. We therefore have Pk�iNt(k) isO(� log1+��Pk�iN 0t(k)) yielding the desired upper bound.We now onsider a lower bound for �-srpt. Let `i (resp., hi) denote the lowest (resp., highest)possible size of a job in group i. We refer to `i and hi as the lower and upper bound, respetively,for group i. (Note that `i = d(1 + �)ie and hi = `i+1 � 1.) Fix nonnegative integer i0. Consideran instane in whih two jobs, one of size hi0 , and another of size `i0 , arrive at time 0. Let i1 behosen suh that hi1 is the largest upper bound that is at most hi0 � `i0 . At time hi0 � hi1 , weintrodue a job of size `i1 . In general, at time hi0 � his , 1 � s < k, where k is spei�ed later, weintrodue a job of size `is , where is is the largest numbered group whose upper bound his is atmost his�1 � `is�1 . Finally, at eah of the time steps hi0 ; hi0 + 1; : : : ; hi0 +m� 1, for an integer mthat is spei�ed later, we introdue a unit size job.We now onsider the shedule omputed by �-srpt for the above instane. Sine �-srpt doesnot di�erentiate among jobs in the same group, it may start the job of size hi0 ahead of the job ofsize `i0 at time 0. Thus, at time hi0 � hi1 , exatly hi1 units of the job are remaining. At this time,a new job of size `i1 arrives. Again �-srpt may give preferene to the larger job and ontinue theexeution of the job with remaining proessing time hi1 . At time hi0 � hi2 , exatly hi2 time unitsare left, at whih time a new job of size `i2 is introdued in the system. As the shedule ontinues,we note that there is a possible exeution of �-srpt suh that at time hi0 , the initial job of size hi0is ompleted; however, jobs of sizes `i0 ; `i1 ; : : : ; are present and have not been proessed at all. Atthis time, sine a sequene of m unit size jobs arrive, we obtain that the total ow of the sheduleobtained is at least hi0 +P0�s<k `is +mk.On the other hand, we an onstrut a shedule in whih there are at most two jobs in the queueat any time. In partiular, suppose we exeute the jobs of size `i0 , `i1 , . . . , `ik�1 , in order, ahead of21

the job of size hi0 . We �nd that our onstrution ensures that all the jobs of size `i0 , . . . , `is�1 havebeen ompleted prior to the arrival of the job of size `is . More signi�antly, when the m jobs of unitsize are being exeuted, only the largest job (of size hi0) is waiting in the system. The total owfor the shedule thus obtained is at most hi0 + 2(P0�s<k `is +m). We now set i0, k, and m suhthat `ik�1 = 1, and m =
(hi0 +P0�s<k `is). We then obtain that the ompetitive ratio of �-srptis
(k). If � is the ratio of the largest and smallest proessing times, then i0 � (log1+��)� 1. Ingeneral, we have is � is�1 � log1+�(1=�) � 1. Thus, we obtaink � log1+��1 + log1+�(1=�) � � log1+��)2 ln(1 + �)(1 + log1+�(1=�)) �
� � log1+��1 + ln(1=�)� :(In the third step, we use the inequality e�=2 � 1 + � for � � 1. For the fourth step, we note thatsine � � 1, 2 ln(1 + �) � 2 = O(1).) This ompletes the proof of the lower bound.A re�nement of �-srpt. We now show that a re�nement of �-srpt ahieves a onstant fatorompetitive ratio for average ow as well; our analysis assumes that � is a positive integer. As�-srpt is presently de�ned, the algorithm does not di�erentiate among jobs in the same group.Sine there is unertainty in the remaining proessing times, ertainly we annot use the remainingproessing times. Nevertheless, we do know the proessing times of the jobs up to a (1 + �) fator;we make use of this information in our tie-breaking mehanism. Let ~St(i) denote the set of jobs inSt(i) that have birth group i.Consider a re�nement of �-srpt whih exeutes at eah step a highest-priority job from thesmallest numbered group that is nonempty, where the priority within a group is assigned as follows:the jobs in ~St(i) have higher priority than those in St(i)� ~St(i); within ~St(i), a partially exeutedjob is given the highest priority. We now analyze the re�ned �-srpt algorithm. We begin bynoting that by the de�nition of the algorithm there is at most one job in St(i) � ~St(i). We de�nea quantity wt(i), whih measures the amount of work performed on the (lone) job in St(i) � ~St(i)while it is in group i, if suh a job exists. More preisely, if St(i)� ~St(i) = fjg, we set wt(i) to be(1 + �)i+1 � 1� �j(t); otherwise, we set wt(i) to be �(1 + �)i.Our analysis for re�ned �-srpt follows the same approah outlined earlier for �-srpt. Thefollowing lemma is a variant of Lemma 4.1.Lemma 4.5 For all times t and groups i, we have wt(i) +Pk�i Vt(k) <Pk�i V 0t (k) + (1 + �)i+1.Proof: The proof is by indution on t. The indution basis is trivial sine wt(i) < (1 + �)i+1 andVt(k) = V 0t (k) for all k. Consider step t. We �rst note that the arrival of new jobs in the systemontribute exatly the same amount to both the sides of the desired inequality. We now onsiderthe sheduling of the jobs. The algorithm exeutes one unit from a job residing in the smallestnonempty group. Let St(`) be the smallest nonempty group. We onsider three ases. For i > `,the volume of the jobs in [k�iSt(k) dereases by 1, and wt(i) does not hange. Thus, the left handside (LHS) of the desired inequality dereases by 1. Moreover, the right hand side (RHS) dereasesby at most 1. Therefore, the indution step holds in this ase.For i = `, if ~St(i) is nonempty, then a job in ~St(i) is exeuted; therefore, Vt(i) dereases by 1and wt(i) does not hange, thus yielding the indution step sine the LHS of the desired inequalitydereases by 1, while the RHS an at most derease by 1. If ~St(i) is empty, then wt+1(i) + Vt+1(i)exatly equals (1 + �)i+1 � 1, thus establishing the inequality.We �nally onsider the ase i < `. If i < ` � 1, then the inequality trivially holds sine thevolume of jobs in groups 0 through i is 0 at time t+1. If i = `�1, we only need to onsider the asewhen a job moves from group ` to `�1 at the end of step t. In this ase, we have wt+1(`�1) = 0 and22

Vt(` � 1) < (1 + �)`, thus again establishing the desired inequality. This ompletes the indutionstep and the proof of the lemma.Corollary 4.5.1 For all times t and groups i, we haveXk�i Nt(k)(1 + �)k < 0�Xk�iN 0t(k)(1 + �)k+11A+ (1 + �)i (9)Proof: If there is no job in the queue of S at time t, then the same holds true for re�ned�-srpt sine the latter is a work-onserving shedule, and the desired laim trivially holds. In theremainder we assume that there is at least one job in the queue of S at time t. Fix i and t. Weonsider two ases. If St(i) � ~St(i) is empty, then wt(i) equals �(1 + �)i, and Equation 9 followsfrom Lemma 4.5 by noting that eah job in St(i) (resp., S0t(i)) has volume at least (1 + �)i andless than (1 + �)i+1. We now onsider the ase when St(i) � ~St(i) is nonempty and equals thesingleton set fpg. In this ase, we note that the sum of wt(i) and the volume of St(i)� ~St(i) equals(1 + �)i+1 � 1. Thus, we have:Xk�i Nt(k)(1 + �)k = Nt(i)(1 + �)i +Xk<i Nt(k)(1 + �)k= (1 + �)i + (Nt(i) � 1)(1 + �)i +Xk<iNt(k)(1 + �)k� (1 + �)i +0�Xk�i Vt(k)1A� �t(p)= (1 + �)i +0�Xk�i Vt(k)1A+ wt(i) � (1 + �)i+1 + 1< (1 + �)i +0�Xk�i V 0t (k)1A+ 1� (1 + �)i +0�Xk�iN 0t(k)((1 + �)k+1 � 1)1A+ 1� (1 + �)i +Xk�i N 0t(k)(1 + �)k+1:(In the third step, we use the fat that every job in St(k) has remaining proessing time at least(1+�)k. In the fourth step, we use the equality wt(i) = (1+�)i+1� 1� �t(k). In the �fth step, weuse Lemma 4.5. In the sixth step, we use the fat that every job in St(k) has remaining proessingtime at most (1 + �)k. Finally, in the last step, we invoke the ondition that there is at least onejob in S.)We now show that re�ned �-srpt is O(1)-ompetitive with respet to average ow. For alltimes t and groups i, we establishXk�i Nt(k) � (1 + �)Xk�iN 0t(k) + d1=�e: (10)The proof is by indution on i. The base ase follows from Equation 9. For the indution hypothesis,assume that Equation 10 holds for all indies less than `, ` > 0. We now establish the laim for23

index `. The proof is similar to the alulation in Lemma A.1. For 0 � i < `, we multiply bothsides of Equation 10 by �(1 + �)i, add the equations together to obtainXk<` �(1 + �)` � (1 + �)k�Nt(k) � Xk<` �(1 + �)`+1 � (1 + �)k+1�N 0t(k) + d1=�e(1 + �)` (11)Adding together Equation 9, with index ` substituted for i, and Equation 11, we obtain(1 + �)Xk�`Nt(k) < (1 + �)`+1Xk�`N 0t(k) + (1 + �)`(d1=�e + 1): (12)Dividing both sides of Equation 12 by (1 + �)` and noting that the LHS is an integer yields thedesired inequality for the indution step. The O(1) bound on the ompetitive ratio of �-srptdiretly follows from Equation 10.4.2 Analysis of �-sptWe now onsider a di�erent model for unertainty in job sizes. In this model, when a job j arrivesthe proessing time p(j) of the job is not known. Instead, what is known is the number i suh that(1 + �)i � p(j) < (1 + �)i+1; as in Setion 4.1, we refer to i as the birth group of job j. In thissetion, we show that the following simple algorithm, �-spt, ahieves an O(1) ompetitive ratiowith respet to average streth: In eah step, �-spt exeutes one unit of work on a job that hasthe smallest numbered birth group; ties are broken in favor of partially exeuted jobs.The analysis of �-spt is similar to that of �-srpt. Let St(i) (resp., S0t(i)) denote the set of jobsin the queue at time t that have birth group i. Let Nt(i) (resp., N 0t(i)) denote the number of jobswith birth group i at time t in the �-spt shedule (resp., S). Let Vt(i) (resp., V 0t (i)) denote thetotal volume of jobs with birth group i at time t in the �-spt shedule (resp., S). The followinglemma shows that the pre�x sum of birth group volumes in �-spt is at most that in any othershedule at any time.Lemma 4.6 For all times t and groups i, we have Pk�i Vt(k) �Pk�i V 0t (k).Proof: The proof follows from an easy indution on time t. The indution base, for t = 0, istrivial. At any time t, the arrival of new jobs inreases both the LHS and the RHS of the desiredinequality by the same amounts. Sine �-spt exeutes a job that has the smallest birth group andthe birth group of a job never hanges, the indution step follows from the indution hypothesis.Sine we give preferene to partially exeuted jobs within a birth group and the birth group of ajob never hanges, it follows that in eah birth group i, there is at most one partially exeuted job.Let ~St(i) denote the subset of jobs in St(i) that have not yet been exeuted; hene their remainingproessing times equal their proessing times. (Thus, j ~St(i)j � Nt(i) � 1.) Let ~Nt(i) denote thenumber of jobs in ~St(i). The following laim, whih bounds the streth ontribution of the jobs inPk ~St(k), follows from Lemma 4.6 and Lemma A.1.Lemma 4.7 For all times and groups i, we haveXk�i ~Nt(k)(1 + �)k �Xk�i N 0t(k)(1 + �)k�1 (13)
24

Proof: The set ~St(k) onsists of jobs with birth group k that have been released but not proessedat all until time t. Thus, the remaining proessing time of eah of these jobs is at least (1 + �)k.Therefore, we obtain Xk�i ~Nt(k)(1 + �)k � Xk�i Vt(k)� V 0t (k)� Xk�i N 0t(k)(1 + �)k+1(The �rst step holds sine ~Nt(k) � jSt(k)j and eah job in St(k) has proessing time at least (1+�)k.The seond step follows from Lemma 4.6. The last step holds sine N 0t(k) � jS0t(k)j and eah jobin S0t(k) has proessing time at most (1 + �)k+1.)We now invoke Lemma A.1 with ak = ~Nt(k)(1 +�)k, bk = N 0t(k)(1 + �)k+1, and � = 1=(1 +�)2to obtain the desired laim.We now analyze the streth ontribution of the jobs in �-spt's queue at time t. Our omparisonis with a shedule S that minimizes the total streth ontribution of all jobs in the queue of S attime t. As we have argued earlier (in the analysis of �-srpt), we an assume without loss ofgenerality that none of the jobs in the queue of S at time t have been proessed sine their release.It follows from Lemma 4.7 that the streth ontribution of jobs in [k�0 ~St(k) is at most (1 + �)2times the streth ontribution of the jobs in S at time t. (In the preeding argument, we have usedthe fats that the size of eah job in ~St(i) is at least (1 + �)i while the size of eah job in S0t(i) isat most (1 +�)i+1.) Thus, added over time, the streth ontribution of the jobs in [k�0 ~St(k), is atmost (1 + �)2S�.We now onsider the streth ontribution of the partially exeuted jobs in �-spt at time t. Wenote that this ontribution is at most (1 + �)=� times that of the partially exeuted job in thesmallest numbered nonempty group; this job is the one that is exeuted at time t. Sine the strethontribution of the job that is being proessed, when added over all times, is at most n, it followsthat the total ontribution of partially exeuted jobs is at most (1 + 1=�)n. We thus obtain thatthe total streth of �-spt is at most (1 + �)2S� + (1 + 1=�)n, whih is O(S�) for onstant � > 0,sine S� � n. For � = 1, the total streth is at most 4S� + 2n, and thus has a ompetitive ratioof at most 6. The minimum bound on the ompetitive ratio is ahieved when � = 0:565; for thisvalue of �, the ompetitive ratio is at most 5.22.While �-spt is near-optimal with respet to average streth, its ompetitive ratio with respetto average ow is
(log�), as exempli�ed by the following instane. For onreteness, we �x � = 1,and ` to be power of 2. Consider a sequene of ` � log ` + 1 jobs of size 2k, log ` � k � `, thatarrive as follows: the job of size 2k arrives at time (Pk<i�` 2i)� (`� k). Finally, `� 1 time unitsafter the arrival of the job of size `, a sequene of a large number, M , of unit-size jobs arrive oneafter another at onseutive time steps. From the de�nition of 1-spt, it follows that when the jobof size 2k arrives, the algorithm will preempt the job that is urrently being exeuted and beginproessing the job of size 2k. When the sequene of unit-size jobs start arriving, the queue of 1-sptonsists of ` � log ` + 1 un�nished jobs, eah having one unit of remaining proessing time left.Eah of the `� log `+1 jobs is made to wait until the entire sequene of unit-size jobs is ompleted.Consequently, the average ow ahieved by 1-spt is
(`M + 2`). On the other hand, suppose weshedule the jobs in the following priority order: the �rst ` � log ` jobs in order of their releasetimes, then the M unit-sized jobs in order of their release times, and �nally the job of size `. Thetotal ow of the preeding shedule is O(M+2`). By settingM � 2` and noting that ` = �(log�),we establish the laimed lower bound on the ompetitive ratio of 1-spt.25

The primary reason for the failure of �-spt to perform well with respet to average ow is thata job with a large proessing time and very small remaining proessing time may be given lowerpriority than a job with shorter proessing time that has just been released. Sine the informationabout proessing times is only aurate up to a fator of 1+�, the algorithm does not have a goodestimate on the remaining proessing time of the jobs being partially exeuted. In fat, the rangefor the estimate ould be a onstant fration of the proessing time. To see this, we onsider � = 1;when 2i � 1 units of a job with birth group i is exeuted, the remaining proessing time ould beanywhere in the range [1; 2i℄.In reent work [13℄, an interesting re�nement of �-spt has been shown to ahieve an O(1)ompetitive ratio with respet to average ow. In this re�nement, the algorithm tends to shedulejobs in the smallest nonempty birth group, yet maintains the onstraint that the number of partiallysheduled jobs is within a onstant fration of the total number of jobs in the queue.Referenes[1℄ F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, I. Milis, M. Queyranne, M. Skutella,C. Stein, and M. Sviridenko. Approximation shemes for sheduling to minimize averageompletion time with release dates. In Proeedings of the 40th Annual IEEE Symposium onFoundations of Computer Siene, pages 32{43, Otober 1999.[2℄ K. R. Baker. Introdution to Sequening and Sheduling. Wiley, New York, 1974.[3℄ H. Bast. Dynami sheduling with inomplete information. In Proeedings of the 10th AnnualACM Symposium on Parallel Algorithms and Arhitetures, pages 182{191, 1998.[4℄ H. Bast. On sheduling parallel tasks at twilight. Theory of Computing Systems, 33:489{563,2000.[5℄ M. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and streth metris for shedulingontinuous job streams. In Proeedings of the 9th Annual ACM-SIAM Symposium on DisreteAlgorithms, pages 270{279, January 1998.[6℄ M. Bender, S. Muthukrishnan, and R. Rajaraman. Improved algorithms for streth sheduling.In Proeedings of the 13th Annual ACM-SIAM Symposium on Disrete Algorithms, pages 762{771, January 2002.[7℄ C. Chekuri and S. Khanna. Approximation shemes for preemptive weighted ow time. InProeedings of the 34th Annual ACM Symposium on Theory of Computing, pages 297{305,2002.[8℄ C. Chekuri, S. Khanna, and A. Zhu. Algorithms for minimizing weighted ow time. InProeedings of the 33rd Annual ACM Symposium on Theory of Computing, pages 84{93, 2001.[9℄ A. Goel, M. Henzinger, S. Plotkin, and E. Tardos. Sheduling data transfers in a network andthe set sheduling problem. In Proeedings of the 31st Annual ACM Symposium on Theory ofComputing, pages 189{197, Atlanta, Georgia, May 1999.[10℄ M. Harhol-Balter, M. Crovella, and C. Murta. Task assignment in a distributed server.Journal of Parallel and Distributed Computing, 59:204{228, 1999.26

[11℄ B. Kalyanasundaram and K. Pruhs. Minimizing ow time nonlairvoyantly. In Proeedings ofthe 38th IEEE Symposium on Foundations of Computer Siene, pages 345{352, 1997.[12℄ B. Kalyanasundaram, K. Pruhs, and M. Velauthapillai. Sheduling broadasts in wirelessnetworks. In Proeedings of the Annual European Symposium on Algorithms, pages 290{301,2000.[13℄ T. Leighton, January 2003. Personal ommuniation.[14℄ S. Leonardi and D. Raz. Approximating total ow time on parallel mahines. In Proeedingsof the 29th Annual ACM Symposium on Theory of Computing, pages 110{119, May 1997.[15℄ R. Motwani, S. Phillips, and E. Torng. Nonlairvoyant sheduling. Theoretial ComputerSiene, 130:17{47, 1994.[16℄ S. Muthukrishnan and R. Rajaraman. An adversarial model for distributed dynami loadbalaning. Journal of Interonnetion Networks, 3:35{47, 2002.[17℄ S. Muthukrishnan, R. Rajaraman, A. Shaheen, and J. Gehrke. Sheduling to minimize averagestreth. In Proeedings of the 40th Annual IEEE Symposium on Foundations of ComputerSiene, pages 433{442, Otober 1999.A An algebrai inequalityLemma A.1 Let ai; bi, 0 � i < n, denote two sequenes of reals that satisfy the following inequalityfor 0 � i < n. X0�k�i ak � X0�k�i bk (14)Then, for any positive real � < 1, we have, for 0 � i < n,X0�k�i ak�k � X0�k�i bk�k (15)Proof: The proof is by indution on i. For the base ase, we let i = 0. For this ase, Equation 15follows from Equation 14. For the indution step, we onsider index ` > 0. We now invoke theindution hypothesis, multiply Equation 15 by (1 � �)��i, for eah i < `, and add the resultinginequalities together to obtainX0�i<`(1� �)��i X0�k�i ak�k � X0�i<`(1� �)��i X0�k�i bk�k:Rearranging the order of the summation on both sides of the inequality, we obtainX0�k<`(1� �)ak�k Xk�i<`��i � X0�k<`(1� �)bk�k Xk�i<`��i;leading to Xk<` ak(�k�` � 1) � Xk<` bk(�k�` � 1) (16)Adding Equation 14, with i replaed by `, and Equation 16 and multiplying by �` yields the desiredinequality for the indution step. 27

