
Approximation Algorithms for Average Stret
h S
heduling�Mi
hael A. Bender 1 S. Muthukrishnan 2 Rajmohan Rajaraman 3July 22, 2003Abstra
tWe study the basi
 problem of preemptive s
heduling of a stream of jobs on a single pro
essor.Consider an online stream of jobs, and let the ith job arrive at time r(i) and have pro
essingtime p(i). If C(i) is the
ompletion time of job i, then the
ow time of i is C(i) � r(i) andthe stret
h of i is the ratio of its
ow time to its pro
essing time; that is, C(i)�r(i)p(i) . Flow timemeasures the time that a job is in the system regardless of the servi
e it requests; the stret
hmeasure relies on the intuition that a job that requires a long servi
e time must be prepared towait longer than jobs that require small servi
e times.We present improved algorithmi
 results for the average stret
h metri
 in preemptive unipro-
essor s
heduling. Our �rst result is an o�ine polynomial-time approximation s
heme (PTAS)for average stret
h s
heduling. This improves upon the 2-approximation a
hieved by the onlinealgorithm srpt that always s
hedules a job with the shortest remaining pro
essing time. Inre
ent work, Chekuri and Khanna [7℄ have presented approximation algorithms for weighted
ow time, whi
h is a more general metri
 than average stret
h; their result also yields a PTASfor average stret
h. Our se
ond set of results
onsiders the impa
t of in
omplete knowledge ofjob sizes on the performan
e of online s
heduling algorithms. We show that a
onstant-fa
tor
ompetitive ratio for average stret
h is a
hievable even if the pro
essing times (or remainingpro
essing times) of jobs are known only to within a
onstant fa
tor of a

ura
y.1 Introdu
tionWe
onsider the basi
 unipro
essing s
heduling s
enario. We have a single pro
essor that pro
essesjobs as they arrive online. The ith job arrives at time r(i) and has pro
essing time p(i) that isknown at the time of its arrival. We restri
t our attention to s
heduling with preemption; that is,jobs may be stopped before their
ompletion and resumed later after other jobs get exe
uted in theinterim.Traditionally, the fo
us of performan
e has been on the
ow time (also referred to as the responsetime), whi
h is de�ned as the amount of time that a given job spends in the system. That is, if C(i)is the
ompletion time of job i, then the
ow time is C(i)� r(i). Alternatively, pra
titioners haveused slowdown or stret
h to measure the e�e
t of s
heduling on an individual job (e.g., [10℄. Thestret
h of a job is the ratio of its
ow time to its pro
essing time; that is, C(i)�r(i)p(i) [5℄. Stret
h is1Department of Computer S
ien
e, SUNY at Stony Brook, NY 11794, Email: bender�
s.sunysb.edu.2Department of Computer S
ien
e, Rutgers University, Pis
ataway, NJ 08854, Email: muthu�
s.rutgers.edu.Part of this work was done while the author was at AT&T Shannon Laboratories, Florham Park, NJ 07932.3College of Computer & Information S
ien
e, Northeastern University, Boston, MA 02115, Email:rraj�

s.neu.edu. Supported by NSF CAREER award NSF CCR{9983901.�The results of this paper appeared earlier in an extended abstra
t [6℄.1

a rather natural
riterion: jobs that require large pro
essing time must be prepared to wait longerthan the ones that need the system for less time.Overview of our results. We present improved algorithmi
 results for the average stret
hmetri
, or, equivalently the total stret
h metri
a, in preemptive unipro
essor s
heduling.� PTAS for average stret
h: We present a polynomial time approximation s
heme (PTAS) forminimizing average stret
h o�ine. For any
onstant " > 0, our algorithm yields an (1 + ")-approximation in O(npoly(1=")) time.Our PTAS result, whi
h appears in Se
tion 3, improves on the approximation fa
tor of 2a
hieved by the online shortest remaining pro
essing time algorithm (srpt). Furthermore,there exists a
onstant
 > 1 su
h that no online algorithm
an a
hieve a
ompetitive ratioof better than
 [17℄.Our approa
h for developing a PTAS for average stret
h is to round the job sizes to the nearestintegral power of (1 + "), thus dividing the jobs into groups, and then s
heduling the groups fromthe smallest rounded job size to the largest. S
heduling one group of jobs, however,
onstrains thetimes at whi
h other groups of jobs may be s
heduled. Designing a (1+")-approximate s
hedule forsu
h \
onstrained" s
heduling problems poses a key
hallenge in the design of a PTAS. The heartof our result, whi
h is presented in Se
tion 3, is a useful
hara
terization of (1 + ")-approximates
hedules that redu
es the size of the sear
h spa
e of relevant s
hedules.The te
hnique of rounding job sizes, whi
h is used in our PTAS, is a
ommonly-used tool andis e�e
tive in redu
ing the spa
e of s
hedules of interest to yield eÆ
iently
omputable s
hedules.Rounding also has great pra
ti
al signi�
an
e. Traditionally, s
heduling algorithms assume
om-plete knowledge (
lairvoyan
e) of the pro
essing times of the jobs. In pra
ti
e, however, estimatingjob sizes
annot be a

urate in general. So a more reasonable approa
h is to assume that the upperand lower bounds on the job sizes are known that are
orre
t up to a
onstant fa
tor. In Se
tion 4,we analyze the average stret
h and
ow performan
e of two natural on-line algorithms that s
hedulejobs on the basis of the rounded values of the remaining pro
essing times, and pro
essing times,respe
tively.� Study of the impa
t of rounding: We �rst analyze a generalization of srpt, referred to as�-srpt, whi
h s
hedules in ea
h step a job with remaining pro
essing time within a (1 + �)-fa
tor of the shortest remaining pro
essing time, for some
onstant � > 0. We show thatwhile �-srpt is O(1)-
ompetitive with respe
t to average stret
h, it is
(log�)-
ompetitivewith respe
t to average
ow time, where � is the ratio of the largest job size to the smallestjob size. We then present a suitable re�nement of �-srpt that is O(1)-
ompetitive withrespe
t to both average stret
h and average
ow time. The pre
eding results are appli
ablein s
heduling s
enarios in whi
h remaining pro
essing times of jobs are approximately knownat ea
h step. A more realisti
 model for partial knowledge of job sizes is a relaxation of thenon-
lairvoyant model, in whi
h the pro
essing time of any job is known to within a
onstantfa
tor only at the time of the release of the job. Under this model, we show that a variantof the shortest pro
essing time algorithm (spt) is O(1)-
ompetitive with respe
t to averagestret
h.aThe average stret
h of a given s
hedule is the ratio of the sum of the stret
hes of all the jobs in the s
hedule, whi
his the total stret
h, to the number of jobs in the instan
e. Thus, average stret
h and total stret
h are equivalent, interms of both optimization and approximation. 2

Related work. This paper fo
uses on the online and o�ine
omplexity of stret
h s
heduling.Two measures
losely related to average stret
h are weighted
ompletion time and weighted
owtime, ea
h of whi
h asso
iate a weight w(i) with ea
h job i. If we set the weight of job i tobe the re
ipro
al of pro
essing time (i.e., 1=p(i)), then the total weighted
ompletion time of agiven s
hedule be
omes Pi C(i)=p(i), whi
h equals Pi(C(i)� r(i))=p(i) +Pi r(i)=p(i) (here C(i)is the
ompletion time of job i in the given s
hedule). With the pre
eding weight assignment,the total weighted
ompletion time thus equals the total stret
h plus a term (Pi r(i)=p(i)), whi
his independent of the s
hedule. Thus, optimizing weighted
ompletion time also optimizes totalstret
h, whi
h is identi
al to optimizing average stret
h. In terms of approximation, however, theweighted
ompletion time and average stret
h metri
s are signi�
antly di�erent. Consequently, there
ent PTAS for weighted
ompletion time [1℄ does not yield any useful approximation for averagestret
h. The average weighted
ow time with weights given by the re
ipro
al of pro
essing times,on the other hand, is identi
al to the average stret
h metri
. The best known approximation resultfor weighted
ow time is the re
ent approximation s
heme of [8℄, whi
h takes time superpolynomial,but subexponential, in the input size. In a subsequent study [7℄ performed independently of ourwork, it has been shown that a quasi-PTAS is a
hievable for weighted
ow time when � and theratio of the maximum weight to minimum weight are both polynomially bounded. Sin
e [7℄ studythe weighted
ow time metri
, their results are more general than ours; when applied to the spe
ial
ase of the average stret
h metri
, the results of [7℄ yield a PTAS, thus mat
hing our result foraverage stret
h.Our models for
apturing in
omplete information of job sizes may be viewed as relaxationsof non-
lairvoyant s
heduling. In non-
lairvoyant s
heduling, no information about job sizes isavailable at release time. The
ompetitiveness of non-
lairvoyant unipro
essor s
heduling, withrespe
t to the average
ow metri
, is studied in [11, 15℄. Our model of un
ertainty in job sizes isrelated to a general framework developed in [3, 4℄, whi
h also
aptures the varian
e in job sizes byusing lower and upper limits. The underlying model of job arrivals and the performan
e metri
studied are di�erent, however; in [3, 4℄, the jobs are given at the start of the
omputation and needto be s
heduled on an asyn
hronous multipro
essor system to minimize makespan.As mentioned at the outset, our study
on
erns the basi
 unipro
essor preemptive s
hedulingsetting. More
omplex s
heduling s
enarios have been studied, in
luding multipro
essor s
heduling(e.g., [14℄), broad
ast s
heduling (e.g., [12℄), and network
onne
tion s
heduling (e.g., [9℄). Clearly,some of the questions we have raised are relevant in these s
enarios, and deserve further attention.2 PreliminariesIn this se
tion, we present some basi
 de�nitions and notation, that are used frequently in theremainder of the paper. Let I be a given s
heduling instan
e. Re
all that a s
heduling instan
e isspe
i�ed by a set of jobs J , and for ea
h job j 2 J , a release time r(j) and a pro
essing time p(j).We restri
t our attention to dis
rete time, and assume that the release times and pro
essingtimes are all nonnegative integers. We note that any instan
e with rational release and pro
essingtimes
an be transformed to an equivalent instan
e with integral release and pro
essing timesthrough s
aling; furthermore, the size of the transformed instan
e is polynomial in the size ofthe original instan
e. In our analyses, we frequently need to refer to time intervals
ontaining
onse
utive time steps. We use the notation [t1; t2℄ to refer to the set of time steps ft : t1 � t � t2g.For a given s
hedule, the queue at a given time t
onsists of all jobs that have been released ator before time t and not
ompleted by time t. The remaining pro
essing time of jobs in the queueplays an important role in our analyses. We let �t(j) denote the remaining pro
essing time of job j3

at time t in the given s
hedule. We say that a job j delays job j0 6= j at time t in a given s
hedule,if j is s
heduled at time t and j0 is in the queue at time t. We overload the de�nition of delay andsay that a job j delays job j0 if there exists any time t at whi
h j delays j0.3 PTAS for o�ine average stret
hIn this se
tion, we des
ribe a polynomial-time approximation s
heme (PTAS) for the total stret
hmetri
 (equivalently, average stret
h) in unipro
essors. Our presentation is organized into 5 sub-se
tions. In Se
tion 3.1, we present an overview of our algorithm, state three key lemmas, andderive the main result based on the key lemmas. In Se
tion 3.2, we establish basi

hara
teristi
sof optimal s
hedules. In Se
tions 3.3 through 3.5, we prove the three lemmas stated in Se
tion 3.1.3.1 Overview and main theoremWe begin by introdu
ing some notions of instan
es and s
hedules that play a
entral role in ouralgorithm and its analysis. In the pro
ess of
onstru
ting a
omplete s
hedule for a given instan
e,we derive partial s
hedules in whi
h we s
hedule a subset of the jobs in the instan
e. The remainingjobs are thus forbidden to be s
heduled at the times assigned in the partial s
hedule. We refer tothe set of remaining jobs, their release times, and the forbidden times as a
onstrained instan
e.A
on
ept
ommonly used in s
heduling is that of list s
hedules. A list s
hedule is a s
hedule thatassigns a priority order among the jobs; in ea
h step of the s
hedule, of those jobs already releasedand not yet
ompleted, the job with the highest priority is s
heduled. It is easy to show that everyoptimal s
hedule for any
onstrained instan
e is a list s
hedule (Lemma 3.4 of Se
tion 3.2). Werestri
t our attention to another
lass of s
hedules, whi
h we refer to as natural, that is well-suitedfor
ow and stret
h metri
s. We say that a s
hedule is natural if it satis�es the property that a jobj delays a job j0 with smaller pro
essing time at a given time t only if the remaining pro
essingtime of j at time t is less than that of j0 at time t. Formally, in a natural s
hedule, if a job j delaysjob j0 at time t and p(j) > p(j0), then �t(j) < �t(j0) = p(j0). It
an be shown that every optimals
hedule is a natural s
hedule (Lemma 3.5 of Se
tion 3.2).We divide the jobs into groups su
h that the sizes of the jobs within a group di�er from oneanother by a fa
tor of at most (1 + "), where " > 0 is an arbitrary
onstant. Formally, for anynonnegative integer i, let group i
onsist of all jobs with size at least (1+")i and less than (1+")i+1.To motivate our algorithm and to fa
ilitate the analysis, we introdu
e the notion of rounded stret
h.The rounded stret
h of a job j in a given s
hedule is the ratio of the
ow time of j in the s
heduleto (1 + ")i, where i is the group to whi
h j belongs. Sin
e the pro
essing time of a job in group iis at least (1 + ")i and at most (1 + ")i+1, it follows that the rounded stret
h of a job in a s
heduleis within a fa
tor of 1 + " of the a
tual stret
h of the job in the s
hedule. We de�ne the rounded
ost of a s
hedule to be the sum of the rounded stret
h of all the jobs in the s
hedule. Thus, therounded
ost of a s
hedule is within a (1 + ") fa
tor of the a
tual
ost of the s
hedule.We hen
eforth adopt rounded
ost as our obje
tive fun
tion. Thus, unless otherwise stated,whenever we refer to an optimal s
hedule, we refer to a s
hedule with minimum rounded
ost.A naive approa
h to minimizing rounded
ost for a given
onstrained instan
e is to assign equal\weight" to ea
h job within a group and s
hedule the jobs within the group in FIFO order. It turnsout, however, that the resultant s
hedule
an have
ost twi
e that of the optimal. It
an be showninstead that in a s
hedule with optimal rounded
ost, the jobs within a group need to be s
heduledin srpt order. We refer to su
h s
hedules as srpt-friendly s
hedules. In Se
tion 3.2, we show thatevery optimal s
hedule is srpt-friendly (Lemma 3.6).4

The notion of srpt-friendly s
hedules allows us to assign an ordering among jobs within a group,that is among jobs that have similar pro
essing times. At the other end, we
an argue that if wehave two jobs, one of whi
h is \substantially larger" than the other, then a s
hedule that optimizestotal stret
h tends to favor the smaller job. We formalize the notion of \substantially larger" bypartitioning the groups into blo
ks and superblo
ks as follows. Blo
k i, for i � 0,
onsists of groupsig through (i+1)g�1, where g equals log1+"(1="2). For simpli
ity, we assume throughout Se
tion 3that 1=" is an integer. All our arguments
an be easily modi�ed to address the
ase where 1=" isnon-integral. It follows from the de�nition of a blo
k that the size of any job in blo
k i is at least1="2 times the size of any job in blo
k j for any j < i � 1. We further partition the blo
ks intosuperblo
ks. Superblo
k 0
onsists of blo
ks 0 through b � 1, where b < 1="2 is spe
i�ed below.Superblo
k i, for i > 0,
onsists of blo
ks b + (i � 1)="2 through b + i="2 � 1. We sele
t b su
hthat the total number of jobs in the largest numbered blo
ks of all of the superblo
ks is at mostn"2. We note that sin
e there are 1="2
hoi
es for b, one su
h
hoi
e exists. For any group i, we letblk(i) (resp., spr(i)) denote the blo
k (resp., superblo
k) to whi
h i belongs. For any superblo
k s,we let grps(s) and blks(s) denote the groups and blo
ks, respe
tively, in superblo
k s.Our organization of the jobs in groups, blo
ks, and superblo
ks has the property that for anysuperblo
k i, jobs in every blo
k of i, but for the largest numbered blo
k, have size at most "2 timesthat of any job in superblo
k j for j > i. Furthermore, the total number of jobs in the largestnumbered blo
ks of all superblo
ks is at most n"2. In the following lemma, we make use of thepre
eding properties to argue that in our sear
h for an (1 + O("))-approximate s
hedule, we
anrestri
t our attention to s
hedules in whi
h no job in superblo
k i delays a job in superblo
k j < i,for any i; we refer to su
h s
hedules as hierar
hi
al s
hedules.Lemma 3.1 For any " > 0
hosen suÆ
iently small, there exists a (1 + 3")-approximate naturalsrpt-friendly list s
hedule that is hierar
hi
al.Lemma 3.1 allows us to divide the given instan
e into several independent
onstrained instan
es,ea
h of whi
h
ontains jobs belonging to one superblo
k only. A superblo
k
ontains jobs belongingto a
onstant number of groups. We are able to show that sin
e the optimal s
hedule for a superblo
kis natural and srpt-friendly, we
an divide the given instan
e into a sequen
e of
onstrainedinstan
es, in ea
h of whi
h there is exa
tly one job from the largest numbered group. Unfortunately,this alone does not signi�
antly limit the number of di�erent s
hedules for one of these instan
es.We over
ome this hurdle by showing that we
an restri
t our spa
e of s
hedules to those s
hedulesin whi
h a parti
ular job (in our
ase, the lone job from the highest numbered group) delays atmost
 smaller jobs, while in
urring an in
rease in rounded
ost of at most (1 + 1=
), for any givenpositive integer
.Lemma 3.2 Let I be any
onstrained instan
e. Let m denote the largest group number of any jobin I. Furthermore, suppose that there is exa
tly one job j from group m in I. Then, given anypositive integer
, any natural list s
hedule for I
an be transformed into another list s
hedule inwhi
h j delays at most
 smaller jobs, while in
urring an in
rease in rounded
ost by a fa
tor of atmost 1 + 1=
.Lemma 3.2 and an enumeration of s
hedules of interest establishes the following
laim, thatforms the �nal pie
e of the algorithm.Lemma 3.3 For any Æ > 0, there exists an nO(k=Æ)-time algorithm to determine a (1 + Æ)k-approximate s
hedule for any
onstrained instan
e with k groups, where n is the number of jobs inthe given instan
e. 5

Using Lemmas 3.1 and 3.3, we now prove the main theorem of this se
tion.Theorem 1 There exists a PTAS for average stret
h s
heduling.Proof: Let I denote the given instan
e. Let s denote the number of superblo
ks. Without lossof generality, we assume that the superblo
ks are numbered 0 through s� 1. For 0 � i � s, let I[i℄denote the sub-instan
e of I
onsisting of jobs in superblo
ks 0 through i� 1.Our algorithm
onsists of iteratively going through the superblo
ks, from the smallest to thelargest job sizes, and applying the algorithm of Lemma 3.3 to ea
h superblo
k as follows. Let Sidenote the s
hedule obtained at the start of iteration i (we
ount iterations from 0). Note that S0 isthe empty s
hedule. We let Ci denote the
onstrained instan
e
onsisting of the jobs in superblo
ki, with the forbidden times being the set of time steps in whi
h the s
hedule Si s
hedules a job.In iteration i, we apply the algorithm of Lemma 3.3 to the
onstrained instan
e Ci. Let S denotethe s
hedule obtained for the
onstrained instan
e. We obtain Si+1 by merging the two s
hedulesSi and S; that is, a job is s
heduled at time t in Si+1 if it is s
heduled at time t in exa
tly one ofSi or S. Sin
e the set of times when a job is s
heduled in S is disjoint from the set of times whena job is s
heduled in Si, Si+1 is a well-de�ned s
hedule for the jobs in superblo
ks 0 through i. Ifs is the number of superblo
ks in the given instan
e, then Ss is the �nal s
hedule obtained by thealgorithm.We now analyze the approximation ratio a
hieved by the algorithm. We argue that the s
heduleSs is a (1 + 7")-approximate s
hedule, for " > 0 suÆ
iently small. This argument is in two parts.We �rst prove, by indu
tion on i, that Si is a (1 + 2")-approximate s
hedule for the instan
e I[i℄among all hierar
hi
al s
hedules. For the base
ase, we let i = 0, and the
laim holds trivially.For the indu
tion step, we note that any hierar
hi
al s
hedule for the instan
e I[i℄
onsists of twodisjoint s
hedules: one for the instan
e I[i�1℄ and the other for the instan
e Ci�1. By the indu
tionhypothesis, Si�1 is a (1 + 2")-approximate s
hedule for I[i � 1℄ among all hierar
hi
al s
hedules.Superblo
k i � 1
onsists of at most g="2 groups where g = log1+"(1="2) � 2 lg(1=")=", for "suÆ
iently small. Applying Lemma 3.3 to
onstrained instan
e Ci�1 with Æ equal to "4=(2 lg(1="))and k equal to 2 lg(1=")="3, we obtain that the s
hedule S obtained in iteration i is a (1 + 2")-approximate s
hedule for Ci�1, as shown in the following:�1 + "42 lg(1=")�2 lg(1=")="3 � e" � (1 + 2");for " > 0 suÆ
iently small. Thus, the s
hedule Si, whi
h is obtained by merging the s
hedules Si�1and S, is a (1 +2")-approximate s
hedule for I[i℄ among all hierar
hi
al s
hedules. This
ompletesthe indu
tion step.For the se
ond part of the approximation ratio argument, we invoke Lemma 3.1 to obtainthat there exists a hierar
hi
al s
hedule whose total stret
h is at most (1 + 3") of the optimumrounded stret
h, taken over all s
hedules. Thus, the total rounded stret
h of s
hedule Ss is atmost (1 + 2")(1 + 3") times the optimal total rounded stret
h. Sin
e the total stret
h is within(1+ ") of the total rounded stret
h, the approximation fa
tor a
hieved by our algorithm is at most(1 + ")(1 + 2")(1 + 3") � (1 + 7"), for any positive
onstant " suÆ
iently small.We now analyze the running time of the algorithm. By Lemma 3.3, the running time foriteration i is a polynomial in the number of jobs in superblo
k i with exponent O(1=("7 lg2(1="))),for " > 0 suÆ
iently small. Adding over all iterations, we obtain that the total running time isnO(1=("7 lg2(1="))), where n is the total number of jobs. We thus have a PTAS for average stret
hs
heduling. 6

The remainder of this se
tion is organized as follows. Se
tion 3.2 establishes
ertain
hara
ter-isti
s of optimal s
hedules. Se
tions 3.3, 3.4, and 3.5 establish Lemmas 3.1, 3.2, and Lemma 3.3,respe
tively.3.2 Natural srpt-friendly list s
hedulesThe following two lemmas apply to optimal s
hedules with respe
t to both stret
h and roundedstret
h.Lemma 3.4 For any
onstrained s
heduling instan
e, every optimal s
hedule is a list s
hedule.Proof: Let S be a s
hedule that has optimal total stret
h (or rounded stret
h) and yet is not alist s
hedule. Sin
e S is not a list s
hedule, it follows that there exist two jobs j1 and j2 and a timestep t su
h that j1 �nishes before j2 and yet at time step t that o

urs after the release of and priorto the
ompletion of j1, j2 is exe
uted. We modify the s
hedule S to obtain a new s
hedule S 0 withsmaller
ost as follows. S 0 is the same as S ex
ept that j1 is s
heduled at time t and j2 is s
heduledat the time step when j1
ompletes in S. Sin
e j1
ompletes earlier in S 0 than in S and all otherjobs
omplete at exa
tly the same times, S 0 has lower
ost than S, thus yielding a
ontradi
tion.Lemma 3.5 For any
onstrained s
heduling instan
e, every optimal s
hedule is a natural s
hedule.Proof: Let S be a given optimal s
hedule that is not natural. Let j be a job that delays a smallerjob j0 exe
uted at time t, and let t be the earliest su
h time. We �rst derive a
ontradi
tion if�t(j) > �t(j0). Sin
e S is a list s
hedule, j
ompletes before j0. Consider the time steps startingfrom t at whi
h either j or j0 is exe
uted. During these steps, j is �rst exe
uted and then j0. Weswap the order to obtain a new s
hedule S 0. The
ompletion time of j0 in S 0 is earlier than the
ompletion time of j in S and the
ompletion time of j in S 0 is identi
al to that of j0 in S. Sin
ep(j0) < p(j), it follows that the total
ost of S 0 is less than that of S, thus yielding a
ontradi
tion.We next show that �t(j0) < p(j0) is also impossible. By Lemma 3.4, the optimal s
hedule is alist s
hedule. Sin
e t is the �rst time step that j0 is delayed by j, it follows that j is not s
heduledduring the period [r(j0); t � 1℄. If �t(j0) < p(j0), then j0 is s
heduled at least on
e during thisinterval, giving it higher priority over j in the s
hedule. Sin
e j is s
heduled ahead of j0 at time t,this yields a
ontradi
tion to the fa
t that S is a list s
hedule.Consider a s
hedule that minimizes total rounded
ost. Sin
e the rounded
ost assigns equal\weights" to all of the jobs in the same group, s
heduling within a group in an optimal s
heduleminimizes the total
ow time of the jobs subje
t to
onstraints pla
ed by jobs outside the group.We establish the following lemma by arguing that every s
hedule that minimizes total
ow time isan srpt s
hedule.Lemma 3.6 For any
onstrained instan
e, every s
hedule that optimizes rounded
ost is srpt-friendly.Proof: Let I be a given
onstrained instan
e and let S be a s
hedule for I that optimizes rounded
ost and yet is not srpt-friendly. Fix a group in whi
h the jobs do not exe
ute in srpt order. LetG denote the set of jobs in the group. Consider the
onstrained s
heduling instan
e I 0, in whi
h theset of jobs is G and the set of allowable times is exa
tly the set of times during whi
h these jobs ares
heduled in S. Sin
e S optimizes rounded
ost, it follows that when restri
ted to the
onstrainedinstan
e I 0, S optimizes total
ow time. We now argue that this leads to a
ontradi
tion. Ourproof resembles
losely the proof of the well-known result that srpt optimizes total
ow time forarbitrary (un
onstrained) s
heduling instan
es [2℄.7

Let t be the earliest time instant when S s
hedules a job j 2 G, while a job j0 2 G with lowerremaining pro
essing time is in the queue at time t (i.e., �t(j0) < �t(j)). By our assumption thatS is not srpt-friendly, su
h a time instant exists. Let T denote the set of time intervals duringthe period [t;1) when either job j or job j0 is s
heduled in S. Thus, the total length of T equals�t(j0)+�t(j). Consider the s
hedule S 0 whi
h is identi
al to S ex
ept that during T , we
ompletelys
hedule the remainder of j (whi
h equals �t(j0)) and then the remainder of j0 (whi
h equals �t(j)).Sin
e �t(j0) < �t(j), it follows that the
ompletion time of j0 in S 0 is less than the
ompletion timeof j in S, while the
ompletion time of j in S 0 is at most the
ompletion time of j0 in S. Sin
ethe total
ow time is the sum of
ompletion times minus the sum of release times, it follows thats
hedule S 0 has a smaller total
ow time than S for instan
e I 0, yielding a
ontradi
tion. Thedesired
laim follows.3.3 Eliminating delays of small jobs by larger jobsIn this se
tion, we prove Lemma 3.1. Given a
onstrained instan
e I and a natural srpt-friendlylist s
hedule S for I, we derive a natural srpt-friendly list s
hedule in whi
h no job in superblo
ki delays any job in superblo
k j for j < i, while in
urring a
ost in
rease by a fa
tor of at most(1 + 2").Let m denote the largest group index in I su
h that a job in group m delays a job in superblo
kspr(m)�1 or lower. (Re
all that spr(m) is the superblo
k to whi
h group m belongs.) We des
ribea sweep pro
edure by whi
h we
onvert S into a new natural srpt-friendly list s
hedule in whi
h nojob in group m delays any job in superblo
k spr(m)� 1 or lower. The sweep pro
edure
onsists ofthe repeated appli
ation of a lo
al reordering pro
edure whi
h ensures that a parti
ular job in groupm does not delay any job in superblo
k spr(m) � 1 or lower; this job is the �rst job in group mthat delays some job in superblo
k spr(m)� 1 or lower, a

ording to s
hedule S. We �rst des
ribethe lo
al reordering pro
edure and then the sweep pro
edure.Lo
al reordering. Let t be the earliest instant at whi
h a job j in group m delays a job insuperblo
k spr(m) � 1 or lower. Let t0 be the earliest time step after t at whi
h there are no jobsfrom superblo
k spr(m) � 1 or lower in the queue. We now
laim that at every time step in theinterval [t; t0 � 1℄, either j or some job in superblo
k spr(m) � 1 or lower is exe
uted. The proofis by
ontradi
tion. Let t1 be the earliest time in [t; t0 � 1℄ at whi
h a job other than j, say j1,belonging to superblo
k spr(m) or higher is exe
uted. We show that �t1(j1) � minfp(j1); p(j)g.We
onsider di�erent
ases:� r(j1) > t: This implies that j1 is exe
uted for the �rst time at time t1; that is, �t1(j1) = p(j1).� r(j1) � t, p(j1) < p(j): Sin
e j delays j1 at time t and S is natural, it follows that �t(j1) =p(j1). This implies that j1 is exe
uted for the �rst time at time t1; thus, �t1(j1) = p(j1).� r(j1) � t; p(j1) � p(j): Sin
e no job in a group higher than m delays any job in superblo
kspr(m)�1 or lower, we obtain in this
ase that j1 is in group m. Sin
e S is a list s
hedule andj is s
heduled at time t, it follows that during the interval [r(j); t� 1℄, j1 is not s
heduled. Ifr(j) � r(j1), then sin
e S is srpt-friendly, it follows that �t(j1) = �r(j)(j1) � p(j). On theother hand, if r(j) � r(j1), then j1 has not been s
heduled until time t, whi
h implies that�t(j1) = p(j1) � p(j). Sin
e t1 is the �rst time in the interval [t; t0 � 1℄ that j1 is s
heduled,it follows that �t1(j1) = �t(j1) � p(j).For ea
h of the above (exhaustive)
ases, we have shown that �t1(j1) � minfp(j1); p(j)g. Sin
e t1is in [t; t0� 1℄, it follows from our
hoi
e of t0 that there exists at least one job j2 from superblo
k i,8

i < spr(m), in the queue at time t1. We thus have a job j1 in superblo
k spr(m) delaying a job j1in a superblo
k i, i < spr(m), even though the remaining pro
essing time of j1 at time t1 is greaterthan that of j2. Formally, we have �t1(j2) � p(j2) < minfp(j); p(j1)g � �t1(j1). This
ontradi
tsour assumption that S is a natural s
hedule.We next observe that sin
e S is a list s
hedule and j delays some job in superblo
k spr(m)� 1or lower at time t, j
ompletes before time t0. Let J denote the set of jobs other than j that areexe
uted in the interval [t; t0 � 1℄. We modify the s
hedule so that j is given a priority lower thanany job in J , and the jobs in J are s
heduled a

ording to an optimal srpt-friendly, natural lists
hedule within [t; t0℄. Let S 0 denote the new s
hedule obtained. We refer to this pro
edure as thereordering pro
edure, and write S 0 = R(S). We also
all J the set of promoted jobs. Note that inS 0, the total rounded stret
h of the jobs in J is at most that in S, while the
ompletion time of jis at most t0. Therefore, the in
rease in rounded
ost is at most Pj02J p(j0)=p(j).Lemma 3.7 The s
hedule S 0 is an srpt-friendly natural list s
hedule.Proof: We �rst argue that the s
hedule S 0 is a list s
hedule. The
ompletion time order for S
onsists of a sequen
e J1, followed by j, followed by a permutation � of the jobs in J , followedby another sequen
e J2. Instead, the
ompletion time order for S 0
onsists of J1, followed by apermutation �0 of the jobs in J , followed by j, followed by another sequen
e J2. It is easy to seethat the jobs are exe
uted in the same priority order. Therefore, S 0 is a list s
hedule.We next argue that the s
hedule S 0 is an srpt-friendly s
hedule. The only jobs that ares
heduled di�erently in S 0 than in S are in the set J [fjg. Consider job j. Sin
e j is the �rst jobin group m to
omplete after time t in S, it follows that the pro
essing within group m is donein srpt order in S 0. All of the jobs in J are
ompletely exe
uted in the interval [t; t0℄ and theirs
heduling is srpt-friendly by
onstru
tion. Therefore S 0 is srpt-friendly.We �nally argue that S 0 is a natural s
hedule. Sin
e S is a natural s
hedule and S 0 di�ersfrom S only in the jobs s
heduled during the interval [t; t0 � 1℄, we need to
onsider the exe
utionsperformed under S 0 during the interval [t; t0 � 1℄ only. Let t1 be any time instant in [t; t0 � 1℄. We
onsider two
ases.� Case 1: Job j is s
heduled at time t1 in S 0. Consider a job j1 in the queue at time t1. Weneed to argue that if p(j1) < p(j), then �t1(j) < �t1(j1) = p(j1). Suppose that p(j1) < p(j).By
onstru
tion of S 0, j1 is not from superblo
k spr(m) � 1 or lower. Sin
e j is the solejob in superblo
k spr(m) or higher that is s
heduled in S 0 during the interval [t; t0 � 1℄,�t1(j1) = �t(j1). Sin
e S is a natural s
hedule and S 0 is the same as S outside of the interval[t; t0�1℄, we have �t(j1) = p(j1); this is be
ause j delays j1 at time t in s
hedule S. Therefore,�t1(j1) = p(j1), thus
ompleting this
ase.� Case 2: Job j0 2 J is s
heduled at time t1 in S 0. The only jobs of smaller pro
essing timethat j0 delays in S 0 belong to J . By the
onstru
tion of S 0, the s
hedule restri
ted to the jobsin J is natural, thus
ompleting this
ase.The above two
ases establish that S 0 is a natural s
hedule, thus
ompleting the proof of the lemma.In s
hedule S 0, no job in group m delays a job in superblo
k 0 through spr(m)� 1 during thetime interval [0; t0 � 1℄. Furthermore, S 0 shares the property of S that no job in group m + 1 orhigher delays any job in a lower indexed superblo
k.Sweep. We repeat the above transformation pro
edure with the s
hedule S 0 whi
h, by Lemma 3.7,is an srpt-friendly natural list s
hedule, and
ontinue until every job in group m delays no job9

in superblo
k spr(m) � 1 or lower. Let S = S0;S1 = R(S0); : : : ;Sk = R(Sk�1); : : : ;S` denote thesequen
e of transformations in the sweep pro
edure, and let J0 = J; J1; : : : ; Jk; : : : ; J`�1 denote thesets of promoted jobs in ea
h transformation. By the de�nition of the reordering pro
ess, the setsJk are all disjoint. From the
ost analysis of the reordering pro
edure, it follows that the in
reasein
ost as a result of the transformation from Sk to Sk+1 is at most the ratio of the sum of thepro
essing times of the jobs in Jk to (1 + ")m. Therefore, the in
rease in
ost due to the sweeppro
edure is at most `�1Xk=0 Xj02Jk p(j0)(1 + ")m � Xs<spr(m) Xi2grps(s) ni(1 + ")m�i�1 (1)where ni is the number of jobs in group i. The inequality follows from the following observations:(a) the set [kJk
ontains jobs from superblo
ks 0 through spr(m)� 1 only; and (b) the pro
essingtime of a job in group i is at most (1 + ")i+1.The s
hedule S` obtained as a result of the sweep pro
edure is a natural srpt-friendly lists
hedule and has the property that no job in groups m or higher delay any job in a lower indexedsuperblo
k. We now use the sweep pro
edure to
onvert a natural srpt-friendly list s
heduleinto another natural srpt-friendly list s
hedule in whi
h no job in superblo
k i delays any job insuperblo
k j < i, for any i, while in
urring an in
rease in
ost by a fa
tor of at most 1 + 2".1. Let m denote the highest indexed group su
h that a job in group m delays a job in superblo
kspr(m) � 1 or lower in S. We apply the sweep pro
edure des
ribed above to obtain a newsrpt-friendly natural list s
hedule bS in whi
h no job in groupm delays any job in superblo
ksspr(m)� 1 or lower.2. We set S to bS and repeat step 1.By repeated appli
ation of Lemma 3.7, it follows that the �nal s
hedule obtained is a natural srpt-friendly list s
hedule. Furthermore, it is hierar
hi
al; that is, no job delays a job that is in a lowerindexed superblo
k.We now
al
ulate an upper bound on the in
rease in
ost due to the above pro
edure. Let m�denote the largest group index. Let s� denote the largest superblo
k index. We need to sum up theterm in Equation 1 over all the groups ex
ept those that belong to superblo
k 0. Let mk denotethe number of jobs in blo
k k. We bound the total in
rease in
ost as follows:

10

Xs0>0 X`2grps(s0)Xs<s0 Xi2grps(s) ni(1 + ")`�i�1= Xs<s� Xi2grps(s)Xs0>s X`2grps(s0) ni(1 + ")`�i�1= Xs<s� Xi2grps(s) m�X`=(b+s="2)g ni(1 + ")`�i�1� Xs<s� Xi2grps(s) ni"(1 + ")(b+s="2)g�i�1� s��1Xs=0 240� Xi:blk(i)=b+s="2�1 ni"(1 + ")(b+s="2)g�i�11A+ Xk<b+s="2�1;k2blks(s)0� Xi:blk(i)=k ni"(1 + ")g�11A35� s��1Xs=0 240� Xi:blk(i)=b+s="2�1 ni" 1A+ Xk<b+s="2�1;k2blks(s)0� Xi:blk(i)=k ni"(1 + ")g�11A35� s��1Xs=0 24mb+s="2�1(1 + ")2" + Xk<b+s="2�1;k2blks(s)(1 + ")mk"35� 2n(1 + ")"� 3n";for " > 0 suÆ
iently small. (To obtain the se
ond line, we
hange the order of summations andnote that summing over s0 > 0 and s < s0 is identi
al to summing over s < s� and s0 > s. The thirdline follows from the fa
t that the �rst group index in superblo
k s+1 is (b+ s="2)g. In the fourthline, we use the inequalityPi�0 1=(1+ ")i � 1=". In the �fth line, we separate the summation overgroups in superblo
k s to two summations, one over groups in the last blo
k in superblo
k s, andthe other over groups in the remaining blo
ks in superblo
k s. In the last step, we use the fa
t thatthe number of jobs in the largest numbered blo
ks of all of the superblo
ks is at most n"2.)Sin
e the rounded stret
h of any job is at least 1, the total rounded stret
h of any s
hedule isat least n. Thus, the in
rease in
ost as a result of the transformation is at most by a fa
tor of(1 + 3"). This
ompletes the proof of Lemma 3.1.3.4 Bounding the number of smaller jobs delayed by a jobIn this se
tion, we prove Lemma 3.2. Let S be the given natural list s
hedule for a given
onstrainedinstan
e I. Let m be the largest group number in S and let j denote the lone job from group min S. Let
 be a given positive integer. The goal is to determine a list s
hedule S 0 for I of
ostat most (1 + 1=
) times the
ost of S su
h that j delays no more than
 jobs in S 0 with smallerpro
essing time than j.Let t denote the earliest time step at whi
h j delays more than
 jobs with smaller pro
essingtime. Let t0 denote the earliest time step after t in whi
h there are exa
tly
 jobs smaller than j inthe queue. Thus, at least one of the
 jobs that are delayed by j at time t
omplete at or beforetime t0. Sin
e S is a list s
hedule, we obtain that j
ompletes before time t0. Let J denote the setof
 jobs smaller than j that are in the queue at time t0. We
laim that none of the jobs in J iss
heduled until time t0. The proof is by
ontradi
tion. Let j0 be a job in J that is exe
uted at time11

t1 prior to t0. We �rst argue that t1 > t. If r(j0) > t, then the pre
eding
laim is trivial; otherwise,sin
e S is a natural s
hedule and j delays j0 at time t, �t(j0) = p(j0), thus implying that t1 > t.Sin
e j0 is exe
uted at time t1 2 (t; t0), at time t1 there are greater than
 jobs in the queue that aresmaller than j. Sin
e j0 is still in the queue at time t0, the remaining at least
 jobs smaller thanj in the queue at time t1 should also be in the queue at time t0 be
ause S is a list s
hedule. Butthere are only
 jobs in the queue at time t0 that are smaller than j, thus yielding a
ontradi
tion.It follows that all of the jobs that are s
heduled during the interval [t; t0� 1℄
omplete prior to timet0. We modify the s
hedule S to derive s
hedule S 0 as follows. During the interval [t; t0 � 1℄, weassign a priority to j higher than all jobs in J and lower than all other jobs. Subje
t to this
onstraint, we derive the best s
hedule for the remaining jobs that
omplete during the interval[t; t0 � 1℄ in S. First, sin
e S 0 is obtained by merely res
heduling the pro
essing performed duringthe interval [t; t0 � 1℄, it follows that all of the jobs, in
luding j, that are s
heduled in S 0 duringthe interval [t; t0 � 1℄
omplete prior to time t0. Sin
e j has least priority among these jobs, thein
rease in rounded
ost as a result of the transformation from S to S 0 is at most (t0� t)=(1 + ")m.In s
hedule S, there are at least
 jobs in groups m� 1 or lower at ea
h instant in [t; t0 � 1℄. Thus,the rounded
ost of S is at least
(t0 � t)=(1 + ")m�1. Therefore, the rounded
ost of S 0 is at most(1 + 1=
) times the rounded
ost of S.We note that the resultant s
hedule obtained may not be a list s
hedule. We
onvert S 0 into alist s
hedule L(S 0) by assigning priorities to ea
h job a

ording to their
ompletion times. In thefollowing lemma, we argue that the rounded
ost of s
hedule L(S 0) is at most that of S 0. We alsoshow that the number of jobs delayed by j does not in
rease; hen
e, it remains at most
. This
ompletes the proof of Lemma 3.2.Lemma 3.8 Let S be a s
hedule for a given
onstrained instan
e and let L(S) denote a list s
heduleobtained by s
heduling every job in the
onstrained instan
e in order of their
ompletion times inS. The rounded
ost of L(S) is at most that of S. Furthermore, the number of jobs delayed by ajob j in L(S) is at most the number of jobs delayed by j in S.Proof: Suppose the jobs
omplete in S in the order j1, j2, . . . , j`, where ` is the number of jobsin the given instan
e. We
laim that for 1 � i � ` and any time t, the total amount of time duringthe interval [0; t℄ that the jobs j1 through ji are s
heduled in L(S) is at least the
orrespondingtime in S. This is be
ause for any i and any available time instant, a job in the set fj1; : : : ; j`g iss
heduled in L(S) at time t if it has been released and not yet
omplete. Applying the pre
eding
laim indu
tively in the order j1 through j`, we obtain that the
ompletion time of any job j inL(S) is at most that in S. Sin
e the rounded stret
h of a job is the ratio of the di�eren
e betweenthe
ompletion time and the release time to the rounded pro
essing time, the rounded
ost of thes
hedule L(S) is at most that of S. This
ompletes the proof of the �rst part of the lemma.For the se
ond part of the lemma, it is enough to observe that the priority order among thejobs in s
hedule L(S) implies that a job j
an never delay a job that
ompletes earlier than j in S.Furthermore, if in L(S) j delays a job j0 that
ompletes later than j in S, then the release time ofj0 is before the
ompletion time of j in S, implying that j delays j0 in S. Thus, the number of jobsthat j delays in L(S) is at most the number of jobs that j delays in S.3.5 An approximation algorithm for a
onstant number of groupsThe �nal step of the algorithm is a polynomial-time approximation algorithm for any
onstraineds
heduling problem with a
onstant number of groups. More pre
isely, we give an nO(k=Æ)-time12

algorithm to determine a (1 + Æ)k-approximate s
hedule for an instan
e with k groups, for anypositive real Æ. Without loss of generality, we assume that 1=Æ is an integer.Our algorithm is based on enumerating s
hedules of interest and sele
ting the s
hedule of leastrounded
ost. Given a s
hedule, the rounded
ost of the s
hedule
an be
al
ulated in O(n) time.Therefore, the algorithm
an be des
ribed by spe
ifying the s
hedules that are enumerated andtheir number. Our algorithm is re
ursive, and we develop an indu
tive proof of its
orre
tnessalong with the algorithm des
ription. We show, by indu
tion on the number of groups, that ouralgorithm enumerates O(nk=Æ+k) s
hedules for an instan
e with k groups, at least one of whi
h is(1 + Æ)k-approximate.Base
ase. The base
ase is when k = 1. In this
ase, our algorithm returns an srpt s
hedule.We �rst argue that every srpt s
hedule has the same rounded
ost. We note that the multiset ofremaining pro
essing times of all jobs at any time in any two srpt s
hedules is identi
al sin
e anysrpt s
hedule de
rements the remaining pro
essing time of a job with least remaining pro
essingtime in ea
h step. It thus follows that the multisets of
ompletion times of the jobs in any two srpts
hedules are identi
al. The rounded
ost is the di�eren
e of the sum of the weighted
ompletiontimes and the sum of the weighted release times, where the weight is equal to the re
ipro
al ofthe rounded job size. Sin
e all the jobs belong to the same group, they have the same weight,implying that the sum of the weighted
ompletion times and the sum of the weighted release timesare, respe
tively, the same for any two srpt s
hedules. Thus, every srpt s
hedule has the samerounded
ost.By Lemma 3.6, every optimal s
hedule is an srpt-friendly s
hedule. Sin
e the instan
e has onegroup only, every srpt-friendly s
hedule is an srpt s
hedule. Sin
e all srpt s
hedules have thesame rounded
ost, it follows that every srpt s
hedule is optimal, thus establishing the
orre
tnessof the algorithm for this
ase.Re
ursive
ase. Suppose we have an instan
e with k groups. Without loss of generality, we mayassume that the k groups are numbered 0 through k � 1. By Lemmas 3.4, 3.5, and 3.6, we knowthat there exists an srpt-friendly natural list s
hedule that has optimal rounded
ost. The overallstru
ture of the re
ursion step is as follows. (We present the formal details below.)1. Division: Divide the given
onstrained instan
e into a sequen
e of
onstrained instan
esfIig, in ea
h of whi
h there is exa
tly one job from the largest numbered group.2. Enumeration: For ea
h instan
e Ii, determine a set Ci of O(n1=Æ)
onstrained instan
esthat
onsist of jobs from groups 0 through k� 2, by enumerating O(n1=Æ) di�erent s
hedulesfor the lone job in group k � 1.3. Re
ursion: For ea
h i and for ea
h
onstrained instan
e in Ci, we re
ursively determinea (1 + Æ)k�1-approximate s
hedule. Ea
h s
hedule thus obtained determines a
andidates
hedule for Ii. We sele
t the best s
hedule among the O(n1=Æ)
andidate s
hedules as thes
hedule for Ii. The s
hedule for the instan
e I is obtained by merging the s
hedules obtainedfor Ii, for all i.Before des
ribing the division step, we introdu
e some notation and a supporting
laim. Let Jdenote the set of jobs in the largest indexed group k� 1, and let ` denote the number of these jobs.We �rst determine the order in whi
h these jobs �nish in an optimal s
hedule. This will enable usto split the given s
heduling instan
e I into `
onstrained s
heduling instan
es I1, I2, . . . , I` su
hthat ea
h instan
e
ontains exa
tly one job from J . In order to determine the order of
ompletionof the jobs in J we use the fa
t that the optimal s
hedule is natural and srpt-friendly. The order13

of
ompletion of jobs in J is the same as that in whi
h the jobs
omplete assuming that the jobsin J are s
heduled in srpt order and every job in J has lower priority than any job in groups 0through k � 2. We refer to su
h a s
hedule as a groupwise s
hedule. Let the
ompletion order ofjobs in J be j1, j2, . . . , j`. For 1 � i � `, let ti denote the
ompletion time of job ji in the groupwises
hedule. For
onvenien
e, we set t0 = 0.Lemma 3.9 The order of
ompletion of jobs in J in an optimal s
hedule is identi
al to that in agroupwise s
hedule.Proof: Let �1t (j) (resp., �2t (j)) denote the remaining pro
essing time of job j at time t undera given optimal s
hedule (resp., groupwise s
hedule). We
laim that for any job j 2 J and any0 � i � `, �1ti(j) = �2ti(j). Before proving this
laim, we argue that the statement of the lemmafollows from the
laim. To see this, note that (a) job ji
ompletes in the groupwise s
hedule attime ti and �2ti�1(ji) > 0; (b) ji
ompletes in the optimal s
hedule at the earliest time t at whi
h�1t (ji) = 0. A

ording to our
laim, �1ti�1(ji) > 0 while �1ti(ji) = 0; therefore, ji
ompletes at sometime in the interval (ti�1; ti℄. The statement of the lemma follows.We now prove the
laim in the pre
eding paragraph. The proof is by indu
tion on i. For thebase
ase, we set i = 0. At time t0 = 0, the remaining pro
essing time of ea
h job in the groupwises
hedule is identi
al to that in the optimal s
hedule; so the desired
laim holds. We now
onsiderthe indu
tion step i > 0. For the indu
tion hypothesis, we assume that �1ti(j) = �2ti(j) for all j 2 J .We
onsider two
ases for the indu
tion step. The �rst
ase is when there does not exist any timet in [ti�1; ti � 1℄ when one s
hedule pro
esses a job in J while the other pro
esses a job not in J .In this
ase, the indu
tion hypothesis dire
tly implies the indu
tion step.For the se
ond
ase, we assume that there exists a time in [ti�1; ti � 1℄ when one s
hedulepro
esses a job in J while the other pro
esses a job not in J . Let t be the earliest su
h time.The indu
tion hypothesis implies that the total work done on jobs outside J in both s
hedules isthe same until time t. Sin
e the groupwise s
hedule assigns lower priority to all jobs in J when
ompared to any job not in J , it follows that at time t the groupwise s
hedule pro
esses a job not inJ (i.e., in one of groups 0 through k�2), while the optimal s
hedule pro
esses a job j 2 J . We now
laim that j is the �rst job in J to
omplete after time t in both the s
hedules (and hen
e, j = ji).By the indu
tion hypothesis, the
hoi
e of t and the fa
t that the jobs in J are pro
essed in srptorder by both the s
hedules (assuming that ties in the srpt order are broken the same way), theremaining pro
essing time of ji at time t is the same in both s
hedules. Sin
e the optimal s
heduleis natural, this remaining pro
essing time is less than (1 + ")k�1, in both s
hedules. This impliesthat �j(t) in both the s
hedules is less than the pro
essing time of any job in J that is released aftertime t. Furthermore, the remaining pro
essing time of every job in the set S = fji+1; : : : ; j`g attime t is at least (1+ ")k�1; this is be
ause otherwise there exists some other job jr, r > i, that hasremaining pro
essing time less than (1 + ")k�1 at time r(ji), implying that jr should have higherpriority than ji in the srpt order, thus yielding a
ontradi
tion. Sin
e the jobs in J are pro
essedin srpt order in both s
hedules, it follows that both the s
hedules assign lower priority to the jobsin the set S = fji+1; : : : ; j`g, when
ompared with the jobs outside S. Thus, in both s
hedules,ji is the job from J that will
omplete next. Furthermore, in both s
hedules, no job from the setfji+1; : : : ; j`g will be pro
essed until the �rst time after t when there is no job outside of S; thistime is the same in both the s
hedules and equals ti. Therefore, we have �1ti(jr) = �2ti(jr) = 0 forr � i and �1ti(jr) = �2ti(jr) = �1t (jr) = �2t (jr), for r > i. This
ompletes the proof of the indu
tionstep, and hen
e the
laim.Division. The order of
ompletion of the jobs in J
an be used to split the optimal s
hedule into` parts. The �rst part begins at time 0 and ends at time t1. We break the given instan
e I into14

two
onstrained instan
es I1 and I 0 as follows. Let the set S1
onsist of j1 and all jobs in groups 0through k � 2 that arrive in the interval [0; t1 � 1℄. We note that all of these jobs
omplete bothin the groupwise s
hedule and in the optimal s
hedule during the interval [0; t1℄. Furthermore, inboth s
hedules, jobs in J �fj1g are exe
uted in srpt order and are given lower priority than everyjob in S1. We set instan
e I1 to be the set S1 of jobs and their release times. We set instan
e I 0 tobe the remainder of the jobs with their release times subje
t to the forbidden times imposed by thejobs of instan
e I1. We note that the set of time periods during whi
h the jobs of instan
e I1 ares
heduled are independent of the parti
ular s
hedule used for I1; hen
e, the
onstrained instan
eI 0 is well-de�ned.By
onstru
tion, the instan
es I1 and I 0
onsist of disjoint sets of jobs and time periods forpro
essing jobs. Given a s
hedule S1 for I1 and a s
hedule S 0 for I 0, we obtain a s
hedule S for I bysimply merging the two s
hedules. That is, a job is s
heduled at time t in S if it is s
heduled at timet in exa
tly one of S1 or S 0. The rounded
ost of S is the sum of the rounded
osts of S1 and S 0.Furthermore, the instan
es I1 and I 0 have been de�ned su
h that the given optimal s
hedule
anbe split into two disjoint s
hedules, one for I1 and the other for I 0. Therefore, an optimal s
hedulefor S
an be obtained by determining optimal s
hedules for both I1 and I 0 and then merging them.Similarly, for any � � 1, an �-approximate s
hedule for I1 and an �-approximate s
hedule for I 0yields an �-approximate s
hedule for I.The division step
onsists of repeating the above splitting iteratively to obtain a series of
onstrained instan
es I1 through I` su
h that in any instan
e Ii, we have exa
tly one job from J(and hen
e group k� 1). By the argument in the pre
eding paragraph, an �-approximate s
hedulefor I
an be obtained by merging together �-approximate s
hedules for ea
h Ii, 1 � i � `. Theenumeration and re
ursion steps show how to obtain a (1 + Æ)k-approximate list s
hedule for any
onstrained instan
e that
ontains exa
tly one job from group k � 1.Enumeration. Consider
onstrained instan
e Ii. The job ji is the lone job of group k � 1 that isin instan
e Ii. By Lemma 3.2, any natural list s
hedule for Ii
an be
onverted into a list s
hedulein whi
h ji does not delay more than 1=Æ smaller jobs, while in
reasing the
ost by a fa
tor of atmost 1 + Æ. Sin
e there exists a natural list s
hedule with optimal rounded
ost, it follows thatthere exists a list s
hedule with
ost at most 1+Æ times the optimal rounded
ost, in whi
h j delaysno more than 1=Æ smaller jobs.We now
ompute a (1 + Æ)k-approximate s
hedule for the instan
e Ii by
omputing a s
hedulethat is (1 + Æ)k�1-approximate among all s
hedules in whi
h ji delays no more than 1=Æ smallerjobs. We stipulate that ji delays at most 1=Æ jobs in groups 0 through k � 2. There are thus atmost 1Æ � n1=Æ� = O(n1=Æ) sele
tions for the set of jobs that may be delayed by ji. Ea
h su
h sele
tionidenti�es a set X of size at most 1=Æ. Every list s
hedule for Ii, whi
h assigns a priority to ji higherthan any job in X and lower than any other job, pro
esses ji at exa
tly the same time periods.Thus, the set X
ompletely determines the time periods at whi
h ji is pro
essed in any s
hedulefor Ii that obeys the
onstraint that ji may not delay any job outside X. For ea
h sele
tion ofX, we determine the times at whi
h ji is pro
essed. We then
al
ulate two
onstrained instan
es
ontaining jobs from groups 0 through k � 2 only. The �rst instan
e in
ludes jobs that do not getdelayed by ji and
omplete before the
ompletion of that job. The se
ond instan
e
onsists of thejobs that get delayed and the jobs that arrive after the
ompletion of ji. All of the time steps priorto this
ompletion
an be marked as forbidden for the se
ond instan
e.For a given �, if we obtain �-approximate s
hedules for ea
h of the two
onstrained instan
esde�ned above, then we
an merge the two s
hedules to obtain a s
hedule for Ii that is �-approximateamong all s
hedules in whi
h ji does not delay any job outside ofX. This
ompletes the enumerationstep. 15

Re
ursion. By the indu
tion hypothesis we know that for any
onstrained instan
e with n jobs andat most s < k groups, our algorithm enumerates O(ns=Æ+s) s
hedules and determines a (1 + Æ)s-approximate s
hedule. Thus, (1 + Æ)k�1-approximate s
hedules for all of the O(n1=Æ) instan
esobtained in the enumeration step, for all Ii,
an be
omputed by enumerating n(k�1)=Æ+k�1 s
hedulesand sele
ting the one with smallest
ost. Thus, the total number of s
hedules enumerated followingthe re
ursion is O(n1=Æ) � ` �O(n(k�1)=Æ+k�1) = O(nkÆ+k). And the approximation fa
tor is at most(1 + Æ)k. This
ompletes the indu
tion step and the proof of Lemma 3.3.4 Rounding of job sizesIn this se
tion, we study the impa
t of in
omplete knowledge of job sizes on stret
h and
ow metri
s.We �rst
onsider a natural variant of srpt, in whi
h jobs are s
heduled a

ording to the roundedvalues of their remaining pro
essing times, rather than the remaining pro
essing times. This
lassof algorithms, whi
h we refer to as �-srpt, is analyzed in Se
tion 4.1.The algorithms studied in Se
tion 4.1 rely on partial knowledge of the remaining pro
essingtime of ea
h job at ea
h step. A more realisti
 model for studying in
omplete knowledge of jobsizes is a relaxation of the non-
lairvoyant model in whi
h the total pro
essing time of any job isknown to within a
onstant fa
tor only at the time of the release of the job. Se
tion 4.2 analyzes�-spt, a variant of spt, under this model.4.1 Analysis of �-srptRe
all that in ea
h step, srpt s
hedules a job that has the least remaining pro
essing time. Inea
h step of �-srpt, we s
hedule a job whose remaining pro
essing time is within a (1 + �) fa
torof that of the job with the least remaining pro
essing time. More formally, at any step, the jobsare divided into groups as follows: a job j is in group i at time t if �t(j) 2 [(1 + �)i; (1 + �)i+1).(Re
all that �t(j) is the remaining pro
essing time of j at time t.) At any step t, �-srpt s
hedulesa job from the smallest numbered group that is nonempty. (Note that �-srpt, with � ! 0, is thesame as srpt.)The two main results in this se
tion
on
ern the performan
e of �-srpt with respe
t to theaverage
ow and average stret
h metri
s. We �rst show that �-srpt is O(1)-
ompetitive withrespe
t to average stret
h, for
onstant � > 0. With respe
t to average
ow, however, we showthat an adversarial me
hanism of breaking ties among jobs in the same group leads to an
(log�)-
ompetitive ratio. (Re
all that � is the ratio of the maximum pro
essing time to the minimumpro
essing time among all jobs in the given instan
e.) This is a surprising departure from the trueoptimality of srpt for average
ow. We �nally present a spe
i�
 tie-breaking me
hanism and showthat the resulting re�nement of �-srpt a
hieves an O(1)
ompetitive ratio for average
ow, andthus is simultaneously
ompetitive for the average
ow and stret
h metri
s.Our analysis of �-srpt pro
eeds by
omparing the state of the queue in �-srpt with the stateof the queue in any other s
hedule, say S. Let St(i) (resp., S0t(i)) denote the set of jobs in group iat time t in the �-srpt s
hedule (resp., S). Let Nt(i) (resp., N 0t(i)) denote the number of jobs inSt(i) (resp., S0t(i)). For a given set of jobs, we refer to the sum of the remaining pro
essing timesof the jobs in the set at time t as the volume of the set at time t. Let Vt(i) (resp., V 0t (i)) denotethe volume of jobs in St(i) (resp., S0t(i)) at time t. We note that the total
ow of a s
hedule issimply the sum, over all time steps t, of the number of jobs in the queue at time t. In parti
ular,the total
ow of the �-srpt s
hedule equalsPtPk�0Nt(k). Similar to total
ow, the total stret
hof a s
hedule
an be
al
ulated as the sum, over all time steps t, of the sum of the re
ipro
als ofthe pro
essing times of the jobs in the queue at time t.16

Before presenting the analysis in detail, we provide a brief overview. We �rst bound, inLemma 4.1, the pre�x sum of the group volumes in the �-srpt s
hedule in terms of the
orre-sponding pre�x sum in S. This enables us to argue that the number of jobs in groups 0 throughi at any time t in the �-srpt s
hedule is not mu
h more than the
orresponding number in anyother s
hedule (Lemma 4.2). More pre
isely, the pre�x sum of the group sizes in �-srpt di�ersfrom the
orresponding pre�x sum for any other s
hedule by only a
onstant number per group.This
laim almost dire
tly yields an upper bound on the
ompetitive ratio of �-srpt with respe
tto average
ow (see Theorem 3). For the average stret
h analysis, we need to do more. By applyinga simple algebrai
 inequality (Lemma A.1), one
an show that a
omparison of the pre�x sums ofgroup sizes leads to a similar
omparison of the sums of the re
ipro
als of the remaining pro
essingtimes. To establish the �nal result, we have to over
ome two hurdles. First, stret
h
orrespondsto the re
ipro
als of the pro
essing times, not remaining pro
essing times. Se
ond, the pre
edingargument based on pre�x sums does not a

ount for the stret
h
ontributions of a
onstant numberof jobs per group (whi
h are not in
luded in the pre�x sums
al
ulated in Lemma 4.2). Thesehurdles are addressed in the �nal proof in Theorem 2.Lemma 4.1 For all times t and groups i, we have Pk�i Vt(k) �Pk�i V 0t (k) + (1 + �)i+1.Proof: The proof is by indu
tion on t. For the indu
tion base, we set t = 0. Sin
e the volumeof jobs in the queue at time 0 is independent of the parti
ular s
hedule, the desired
laim holdstrivially. We now
onsider the indu
tion step t > 0. We �rst note that the arrival of new jobs inthe system
ontributes exa
tly the same amount to both sides of the desired inequality. We now
onsider the s
heduling of the jobs. Algorithm �-srpt exe
utes one unit from a job residing in thesmallest group. That is, if Pk�i Vt(k) > 0, it de
reases by 1. Sin
e at most one unit of any jobmay be exe
uted in the s
hedule S, it follows from the indu
tion hypothesis that ifPk�i Vt(k) > 0,then Pk�i Vt+1(k) � Pk�i V 0t (k) + (1 + �)i+1. If Pk�i Vt(k) = 0 even after the addition of newjobs in the system, then it is possible that Pk�i Vt+1(k) > 0 if a job in group i+ 1 at time t getsexe
uted in time t and lands in group i. In this event, Pk�i Vt+1(k) � (1+ �)i+1, whi
h is at mostPk�i V 0t+1(k) + (1 + �)i+1. This
ompletes the indu
tion step and the proof of the lemma.Lemma 4.2 For all i, there is a subset Tt(i) of St(i) and
orresponding integer Mt(i) = jTt(i)j andvolume Wt(i), su
h that the following inequalities hold.Mt(i) � d1 + �e; for all i (2)Xk�i (Nt(k)�Mt(k)) � (1 + �)Xk�i N 0t(k) (3)Xk�iWt(k) � 2(1 + �)i+1 (4)Furthermore, the job that is pro
essed by �-srpt at time t is in
luded in the set [i�0Tt(i).Proof: We establish Equations 2 through 4 by indu
tion on i. For
onvenien
e, we set Tt(�1) =St(�1) = ; and Nt(�1) = Mt(�1) = N 0t(�1) = Wt(�1) = 0. For the indu
tion basis, we
onsideri = �1. The
laim holds dire
tly by the pre
eding settings.We now establish the indu
tion step. For the indu
tion hypothesis, we assume the two equationsto hold for all indi
es less than i. We now
onsider the equations for a given i � 0. If St(i) isempty, then we set Tt(i) to be empty, and the three equations for the indu
tion step follow from theindu
tion hypothesis. Otherwise, we let Tt(i) be any subset of St(i) that satis�es two
onditions:17

(a) Pk�iWt(k) is at least (1 + �)i+1; (b) if the group i is the least numbered nonempty group andhen
e
ontains the job that will be pro
essed by �-srpt, then we ensure that Tt(0)
ontains thejob. Condition (b) guarantees the last
laim in the statement of the lemma. If
ondition (a) is notsatis�ed, then we set Tt(i) to be St(i).Sin
e ea
h job in Tt(i) has volume at least (1 + �)i, Equation 2 holds. Sin
e ea
h job in Tt(i)has volume less than (1 + �)i+1, it follows that Pk�iWt(k) has volume at most 2(1 + �)i+1, thusestablishing Equation 4. For Equation 3, we
onsider two
ases. If Tt(i) = St(i), then the equationfollows from Equation 3 of the indu
tion hypothesis. Otherwise, we have Pk�iWt(k) � (1+�)i+1,and we deriveXk�i(Nt(k)�Mt(k))(1 + �)k � 0�Xk�i Vt(k)1A�0�Xk�iWt(k)1A� 0�Xk�i V 0t (k)1A+ (1 + �)i+1 �0�Xk�iWt(k)1A� Xk�i V 0t (k)(For the �rst step, we note that the volume of the jobs in St(k)�Tt(k), whi
h equals Vt(k)�Wt(k),is at least Pk�i(Nt(k)�Mt(k))(1 + �)k. The se
ond step follows from Lemma 4.1.)We thus have the following equation.Xk�i(Nt(k)�Mt(k))(1 + �)k �Xk�i N 0t(k)(1 + �)k+1 (5)We invoke Lemma A.1, with ak = (Nt(k)�Mt(k))(1+�)k, bk = N 0t(k)(1+�)k+1, and � = 1=(1+�)to obtain Equation 3.To bound the stret
h
ontributions of the jobs in the sets Tt(i), we
onsider the birth groups ofjobs in the queue, whi
h we de�ne as follows. Let the birth group of a job be the group that thejob resides in at the time of its release. Thus, the birth group of a job j is blog1+� p(j1)
. (Notethat the birth group is identi
al to the notion of group in Se
tion 3.)Lemma 4.3 There is at most one job in [k�iSt(k) that has birth group greater than i.Proof: The proof is by indu
tion on time. For the base
ase, we note that the
laim holds triviallyat the start of the s
hedule. For the indu
tion step, we
onsider the queue at the end of a timestep t � 0. Consider the
ount on the number of jobs in groups 0 through i, for a given i. The jobsthat are not pro
essed do not
hange this
ount. Furthermore, any job that is released at time tbut not pro
essed also does not
hange the
ount. Finally, the lone job j that is pro
essed in stept
hanges the
ount only if the job moves from group i+ 1 to group i as a result of the de
rease inremaining pro
essing time. In this
ase, j is the only job in [k�iSt+1(k). This
ompletes the proofof the desired
laim.The following lemma
hara
terizes the number of time steps that a job
an be delayed by a jobwith a higher birth group.Lemma 4.4 A job j
an be delayed by at most one job with higher birth group, and only at a timewhen the group of j is identi
al to its birth group. Furthermore, the total amount of su
h delay fora job with birth group g is at most (1 + �)g+1. 18

Proof: Consider a job j that is released at time t, and arrives into its birth group g. ByLemma 4.3, there is at most one job (say j0) in groups 0 through g at time t that has its birthgroup greater than g. Suppose the job j0 exists. By the de�nition of �-srpt, no job in groups g+1and higher will be exe
uted until the
ompletion of j. So the only job with birth group higher thang that may delay j is j0. Furthermore, on
e j moves out of group g, it will never be delayed by j0.This is be
ause at the instant j moves out, either j0 is in group g or j0 has already been
ompleted;in either
ase, j will not be delayed by j0 any more. The remaining pro
essing time of j0 at thetime of release of j is at most (1 + �)g+1. Therefore, the total time that j0 may delay j is at most(1 + �)g+1.We are now ready to establish a
onstant-fa
tor upper bound on the
ompetitiveness of �-srptwith respe
t to average stret
h.Theorem 2 For any
onstant � > 0, �-srpt is O(1)-
ompetitive with respe
t to average stret
h.Proof: Our analysis pla
es a bound on the
ontribution to the total stret
h by all the jobs inthe queue of �-srpt at a given time step t by
omparing with the s
hedule that minimizes thetotal stret
h
ontribution at time t. We note that there exists a s
hedule S su
h that S minimizesthe total stret
h
ontribution of jobs at time t and there is no partially exe
uted job in S at timet [17℄. This is be
ause given any s
hedule that minimizes the total stret
h
ontribution of jobsat time t and does not satisfy the property of having no partially exe
uted jobs at time t
an be
onverted into a s
hedule that satis�es the desired property by simply not pro
essing jobs thatremain in
omplete at time t. Sin
e the total stret
h
ontribution at time t is a fun
tion of only thepro
essing times of the jobs in the queue at time t and not the remaining pro
essing times of thejobs in the queue at time t, the
laim holds. In the remainder of the proof, we refer to this s
heduleas S.We �rst invoke Lemma 4.2 to obtain the subsets Tt(i) and asso
iated parameters Mt(i) andWt(i). Consider the
ontribution to the total stret
h by jobs in St(i) � Tt(i), for all i. This
ontribution is at most Pi�0(Nt(i) �Mt(i))=(1 + �)i sin
e any job in St(i) � Tt(i) has pro
essingtime at least (1 + �)i. We obtain that the total stret
h
ontribution at time t in s
hedule S is atleastPi�0N 0t(i)=(1+�)i+1. It thus follows from Equation 3 and Lemma A.1 that the total stret
hdue to jobs in St(i)� Tt(i), taken over all i and t, is at most (1 + �)2 times the optimal stret
h.It remains to analyze the stret
h
ontribution due to the jobs in Tt(i), for all i. Let Y denotethe set of all of these jobs. If Y is empty, then there is nothing to prove. If jY j = 1, then byLemma 4.2, the sole job in Y is
urrently exe
uted by �-srpt. Otherwise, there are at least twojobs in Y . Let j1 denote the job in Y that is being pro
essed by �-srpt. Thus, j1 is in the lowestnumbered nonempty group. Rank the remaining jobs in Y in nonde
reasing order of their groupnumber (breaking ties arbitrarily) and let j2 be the �rst job in this list. Let g1 and g2 denote the
urrent group of j1 and j2, respe
tively; thus g1 � g2. Let g01 and g02 denote the birth groups of j1and j2, respe
tively. We
onsider two
ases.� Case 1: g01 � g02. In this
ase, we have g2 � g01. To see this we note that if g2 < g01, thenwe have two jobs j1 and j2 in the set [k�g2St(k) that have larger birth groups than g2, a
ontradi
tion to Lemma 4.3. It follows that the
ontribution to total stret
h of all jobs in Y
19

at time t is at most 1p(j1) + Xj2Y;j 6=j1 1�t(j) � 1p(j1) + Xk�g01 Xj2Tt(k) 1�t(j)� 1p(j1) + Xk�g01 Xj2Tt(k) �t(j)(1 + �)2k= 1p(j1) + Xk�g01 Wt(k)(1 + �)2k (6)(For the se
ond step, we note that for j 2 Tt(k), �t(j) � (1 + �)k.)� Case 2: g01 > g02. In this
ase, we have a job j2 being delayed by a job with a higher birthgroup. By Lemma 4.4, g2 is the same as g02. Thus every job other than j1 is in a group thatis at least g2. It follows that the
ontribution to total stret
h of all jobs in Y at time t is atmost 1p(j1) + Xj2Y;j 6=j1 1�j(t) � 1p(j1) + Xk�g02 Xj2Tt(k) 1�t(j)� 1p(j1) + Xk�g02 Xj2Tt(k) �t(j)(1 + �)2k= 1p(j1) + Xk�g02 Wt(k)(1 + �)2k (7)(For the se
ond step, we note that for j 2 Tt(k), �t(j) � (1 + �)k.)We now show that Pk�g Wt(k)(1+�)2k for any g is at most 2(2 + �)=(1 + �)g. By Equation 4, we knowthat Pk�iWt(k) � 2(1 + �)i+1. The term Pk�g Wt(k)(1+�)2k is maximal whenWt(g) = 2(1 + �)i+1;and for i > g, Wt(i) = 2(1 + �)i+1 � Xg�k<iWt(k) = 2�(1 + �)i:For a formal proof of the underlying
laim, whi
h relies on elementary algebrai
 manipulations, werefer the reader to [16, Lemma 4.2℄. We thus obtain the following inequality:Xk�g Wt(k)(1 + �)2k � 2(1 + �)g+1(1 + �)2g +Xk>g 2�(1 + �)k(1 + �)2k= 2(1 + �)g�1 +Xk>g 2�(1 + �)k� 2(1 + �)g�1 + 2(1 + �)g= 2(2 + �)(1 + �)g :20

We now substitute the above inequality in Equations 6 and 7 with g = g01 and g = g02, respe
tively.Sin
e p(j1) � (1 + �)g01+1 and p(j2) � (1 + �)g02+1, we obtain that the total stret
h
ontribution ofjobs in Y at time t is at most the sum of two terms: (a) the re
ipro
al of the pro
essing time ofthe job that is being pro
essed; (b) 2(2 + �)(1 + �) times the re
ipro
al of the pro
essing time of ajob that is either being pro
essed or is being delayed by a job with higher birth group. The totalstret
h
ontribution, over time, of the job
urrently being exe
uted is at most n. By Lemma 4.4,the total stret
h
ontribution of the jobs that are delayed by a job with higher birth group is atmost (1 + �)n. It follows that the
ontribution of the jobs in Y is at most n+ 2n(1 + �)2(2 + �).Let the optimal total stret
h be S�. The total stret
h a
hieved by �-srpt is at most ((1 +�)2S� + 2n(1 + �)2(2 + �) + n. Sin
e S� � n, we obtain an O(1)
ompetitive ratio for
onstant� > 0.We now show that �-srpt is �(log�)-
ompetitive with respe
t to average
ow time.Theorem 3 Let � be the ratio of the maximum pro
essing time to the minimum pro
essing time.Algorithm �-srpt is O(� log1+��)-
ompetitive with respe
t to average
ow. Furthermore, for� � 1, there exists an instan
e for whi
h the average
ow of �-srpt is
(�(log1+��)=(1+ln(1=�)))times optimal.Proof: We
onsider the upper bound �rst. By Equations 2 and 3, we obtain the followinginequality for all i and t:Xk�i Nt(k) � (1 + �)Xk�iN 0t(k) + d�+ 1e(i + 1): (8)Sin
e the maximum number of groups is dlog1+��e, setting i = dlog1+��e in Equation 8 yieldsthatPk�iNt(k) is at most (1+�)Pk�iN 0t(k) plusO(� log1+��). Sin
e �-srpt is work-
onserving,it follows that if there is at least one job in the queue of �-srpt at time t, then there is at leastone job in the queue of any other s
heduling algorithm at time t. We therefore have Pk�iNt(k) isO(� log1+��Pk�iN 0t(k)) yielding the desired upper bound.We now
onsider a lower bound for �-srpt. Let `i (resp., hi) denote the lowest (resp., highest)possible size of a job in group i. We refer to `i and hi as the lower and upper bound, respe
tively,for group i. (Note that `i = d(1 + �)ie and hi = `i+1 � 1.) Fix nonnegative integer i0. Consideran instan
e in whi
h two jobs, one of size hi0 , and another of size `i0 , arrive at time 0. Let i1 be
hosen su
h that hi1 is the largest upper bound that is at most hi0 � `i0 . At time hi0 � hi1 , weintrodu
e a job of size `i1 . In general, at time hi0 � his , 1 � s < k, where k is spe
i�ed later, weintrodu
e a job of size `is , where is is the largest numbered group whose upper bound his is atmost his�1 � `is�1 . Finally, at ea
h of the time steps hi0 ; hi0 + 1; : : : ; hi0 +m� 1, for an integer mthat is spe
i�ed later, we introdu
e a unit size job.We now
onsider the s
hedule
omputed by �-srpt for the above instan
e. Sin
e �-srpt doesnot di�erentiate among jobs in the same group, it may start the job of size hi0 ahead of the job ofsize `i0 at time 0. Thus, at time hi0 � hi1 , exa
tly hi1 units of the job are remaining. At this time,a new job of size `i1 arrives. Again �-srpt may give preferen
e to the larger job and
ontinue theexe
ution of the job with remaining pro
essing time hi1 . At time hi0 � hi2 , exa
tly hi2 time unitsare left, at whi
h time a new job of size `i2 is introdu
ed in the system. As the s
hedule
ontinues,we note that there is a possible exe
ution of �-srpt su
h that at time hi0 , the initial job of size hi0is
ompleted; however, jobs of sizes `i0 ; `i1 ; : : : ; are present and have not been pro
essed at all. Atthis time, sin
e a sequen
e of m unit size jobs arrive, we obtain that the total
ow of the s
heduleobtained is at least hi0 +P0�s<k `is +mk.On the other hand, we
an
onstru
t a s
hedule in whi
h there are at most two jobs in the queueat any time. In parti
ular, suppose we exe
ute the jobs of size `i0 , `i1 , . . . , `ik�1 , in order, ahead of21

the job of size hi0 . We �nd that our
onstru
tion ensures that all the jobs of size `i0 , . . . , `is�1 havebeen
ompleted prior to the arrival of the job of size `is . More signi�
antly, when the m jobs of unitsize are being exe
uted, only the largest job (of size hi0) is waiting in the system. The total
owfor the s
hedule thus obtained is at most hi0 + 2(P0�s<k `is +m). We now set i0, k, and m su
hthat `ik�1 = 1, and m =
(hi0 +P0�s<k `is). We then obtain that the
ompetitive ratio of �-srptis
(k). If � is the ratio of the largest and smallest pro
essing times, then i0 � (log1+��)� 1. Ingeneral, we have is � is�1 � log1+�(1=�) � 1. Thus, we obtaink � log1+��1 + log1+�(1=�) � � log1+��)2 ln(1 + �)(1 + log1+�(1=�)) �
� � log1+��1 + ln(1=�)� :(In the third step, we use the inequality e�=2 � 1 + � for � � 1. For the fourth step, we note thatsin
e � � 1, 2 ln(1 + �) � 2 = O(1).) This
ompletes the proof of the lower bound.A re�nement of �-srpt. We now show that a re�nement of �-srpt a
hieves a
onstant fa
tor
ompetitive ratio for average
ow as well; our analysis assumes that � is a positive integer. As�-srpt is presently de�ned, the algorithm does not di�erentiate among jobs in the same group.Sin
e there is un
ertainty in the remaining pro
essing times,
ertainly we
annot use the remainingpro
essing times. Nevertheless, we do know the pro
essing times of the jobs up to a (1 + �) fa
tor;we make use of this information in our tie-breaking me
hanism. Let ~St(i) denote the set of jobs inSt(i) that have birth group i.Consider a re�nement of �-srpt whi
h exe
utes at ea
h step a highest-priority job from thesmallest numbered group that is nonempty, where the priority within a group is assigned as follows:the jobs in ~St(i) have higher priority than those in St(i)� ~St(i); within ~St(i), a partially exe
utedjob is given the highest priority. We now analyze the re�ned �-srpt algorithm. We begin bynoting that by the de�nition of the algorithm there is at most one job in St(i) � ~St(i). We de�nea quantity wt(i), whi
h measures the amount of work performed on the (lone) job in St(i) � ~St(i)while it is in group i, if su
h a job exists. More pre
isely, if St(i)� ~St(i) = fjg, we set wt(i) to be(1 + �)i+1 � 1� �j(t); otherwise, we set wt(i) to be �(1 + �)i.Our analysis for re�ned �-srpt follows the same approa
h outlined earlier for �-srpt. Thefollowing lemma is a variant of Lemma 4.1.Lemma 4.5 For all times t and groups i, we have wt(i) +Pk�i Vt(k) <Pk�i V 0t (k) + (1 + �)i+1.Proof: The proof is by indu
tion on t. The indu
tion basis is trivial sin
e wt(i) < (1 + �)i+1 andVt(k) = V 0t (k) for all k. Consider step t. We �rst note that the arrival of new jobs in the system
ontribute exa
tly the same amount to both the sides of the desired inequality. We now
onsiderthe s
heduling of the jobs. The algorithm exe
utes one unit from a job residing in the smallestnonempty group. Let St(`) be the smallest nonempty group. We
onsider three
ases. For i > `,the volume of the jobs in [k�iSt(k) de
reases by 1, and wt(i) does not
hange. Thus, the left handside (LHS) of the desired inequality de
reases by 1. Moreover, the right hand side (RHS) de
reasesby at most 1. Therefore, the indu
tion step holds in this
ase.For i = `, if ~St(i) is nonempty, then a job in ~St(i) is exe
uted; therefore, Vt(i) de
reases by 1and wt(i) does not
hange, thus yielding the indu
tion step sin
e the LHS of the desired inequalityde
reases by 1, while the RHS
an at most de
rease by 1. If ~St(i) is empty, then wt+1(i) + Vt+1(i)exa
tly equals (1 + �)i+1 � 1, thus establishing the inequality.We �nally
onsider the
ase i < `. If i < ` � 1, then the inequality trivially holds sin
e thevolume of jobs in groups 0 through i is 0 at time t+1. If i = `�1, we only need to
onsider the
asewhen a job moves from group ` to `�1 at the end of step t. In this
ase, we have wt+1(`�1) = 0 and22

Vt(` � 1) < (1 + �)`, thus again establishing the desired inequality. This
ompletes the indu
tionstep and the proof of the lemma.Corollary 4.5.1 For all times t and groups i, we haveXk�i Nt(k)(1 + �)k < 0�Xk�iN 0t(k)(1 + �)k+11A+ (1 + �)i (9)Proof: If there is no job in the queue of S at time t, then the same holds true for re�ned�-srpt sin
e the latter is a work-
onserving s
hedule, and the desired
laim trivially holds. In theremainder we assume that there is at least one job in the queue of S at time t. Fix i and t. We
onsider two
ases. If St(i) � ~St(i) is empty, then wt(i) equals �(1 + �)i, and Equation 9 followsfrom Lemma 4.5 by noting that ea
h job in St(i) (resp., S0t(i)) has volume at least (1 + �)i andless than (1 + �)i+1. We now
onsider the
ase when St(i) � ~St(i) is nonempty and equals thesingleton set fpg. In this
ase, we note that the sum of wt(i) and the volume of St(i)� ~St(i) equals(1 + �)i+1 � 1. Thus, we have:Xk�i Nt(k)(1 + �)k = Nt(i)(1 + �)i +Xk<i Nt(k)(1 + �)k= (1 + �)i + (Nt(i) � 1)(1 + �)i +Xk<iNt(k)(1 + �)k� (1 + �)i +0�Xk�i Vt(k)1A� �t(p)= (1 + �)i +0�Xk�i Vt(k)1A+ wt(i) � (1 + �)i+1 + 1< (1 + �)i +0�Xk�i V 0t (k)1A+ 1� (1 + �)i +0�Xk�iN 0t(k)((1 + �)k+1 � 1)1A+ 1� (1 + �)i +Xk�i N 0t(k)(1 + �)k+1:(In the third step, we use the fa
t that every job in St(k) has remaining pro
essing time at least(1+�)k. In the fourth step, we use the equality wt(i) = (1+�)i+1� 1� �t(k). In the �fth step, weuse Lemma 4.5. In the sixth step, we use the fa
t that every job in St(k) has remaining pro
essingtime at most (1 + �)k. Finally, in the last step, we invoke the
ondition that there is at least onejob in S.)We now show that re�ned �-srpt is O(1)-
ompetitive with respe
t to average
ow. For alltimes t and groups i, we establishXk�i Nt(k) � (1 + �)Xk�iN 0t(k) + d1=�e: (10)The proof is by indu
tion on i. The base
ase follows from Equation 9. For the indu
tion hypothesis,assume that Equation 10 holds for all indi
es less than `, ` > 0. We now establish the
laim for23

index `. The proof is similar to the
al
ulation in Lemma A.1. For 0 � i < `, we multiply bothsides of Equation 10 by �(1 + �)i, add the equations together to obtainXk<` �(1 + �)` � (1 + �)k�Nt(k) � Xk<` �(1 + �)`+1 � (1 + �)k+1�N 0t(k) + d1=�e(1 + �)` (11)Adding together Equation 9, with index ` substituted for i, and Equation 11, we obtain(1 + �)Xk�`Nt(k) < (1 + �)`+1Xk�`N 0t(k) + (1 + �)`(d1=�e + 1): (12)Dividing both sides of Equation 12 by (1 + �)` and noting that the LHS is an integer yields thedesired inequality for the indu
tion step. The O(1) bound on the
ompetitive ratio of �-srptdire
tly follows from Equation 10.4.2 Analysis of �-sptWe now
onsider a di�erent model for un
ertainty in job sizes. In this model, when a job j arrivesthe pro
essing time p(j) of the job is not known. Instead, what is known is the number i su
h that(1 + �)i � p(j) < (1 + �)i+1; as in Se
tion 4.1, we refer to i as the birth group of job j. In thisse
tion, we show that the following simple algorithm, �-spt, a
hieves an O(1)
ompetitive ratiowith respe
t to average stret
h: In ea
h step, �-spt exe
utes one unit of work on a job that hasthe smallest numbered birth group; ties are broken in favor of partially exe
uted jobs.The analysis of �-spt is similar to that of �-srpt. Let St(i) (resp., S0t(i)) denote the set of jobsin the queue at time t that have birth group i. Let Nt(i) (resp., N 0t(i)) denote the number of jobswith birth group i at time t in the �-spt s
hedule (resp., S). Let Vt(i) (resp., V 0t (i)) denote thetotal volume of jobs with birth group i at time t in the �-spt s
hedule (resp., S). The followinglemma shows that the pre�x sum of birth group volumes in �-spt is at most that in any others
hedule at any time.Lemma 4.6 For all times t and groups i, we have Pk�i Vt(k) �Pk�i V 0t (k).Proof: The proof follows from an easy indu
tion on time t. The indu
tion base, for t = 0, istrivial. At any time t, the arrival of new jobs in
reases both the LHS and the RHS of the desiredinequality by the same amounts. Sin
e �-spt exe
utes a job that has the smallest birth group andthe birth group of a job never
hanges, the indu
tion step follows from the indu
tion hypothesis.Sin
e we give preferen
e to partially exe
uted jobs within a birth group and the birth group of ajob never
hanges, it follows that in ea
h birth group i, there is at most one partially exe
uted job.Let ~St(i) denote the subset of jobs in St(i) that have not yet been exe
uted; hen
e their remainingpro
essing times equal their pro
essing times. (Thus, j ~St(i)j � Nt(i) � 1.) Let ~Nt(i) denote thenumber of jobs in ~St(i). The following
laim, whi
h bounds the stret
h
ontribution of the jobs inPk ~St(k), follows from Lemma 4.6 and Lemma A.1.Lemma 4.7 For all times and groups i, we haveXk�i ~Nt(k)(1 + �)k �Xk�i N 0t(k)(1 + �)k�1 (13)
24

Proof: The set ~St(k)
onsists of jobs with birth group k that have been released but not pro
essedat all until time t. Thus, the remaining pro
essing time of ea
h of these jobs is at least (1 + �)k.Therefore, we obtain Xk�i ~Nt(k)(1 + �)k � Xk�i Vt(k)� V 0t (k)� Xk�i N 0t(k)(1 + �)k+1(The �rst step holds sin
e ~Nt(k) � jSt(k)j and ea
h job in St(k) has pro
essing time at least (1+�)k.The se
ond step follows from Lemma 4.6. The last step holds sin
e N 0t(k) � jS0t(k)j and ea
h jobin S0t(k) has pro
essing time at most (1 + �)k+1.)We now invoke Lemma A.1 with ak = ~Nt(k)(1 +�)k, bk = N 0t(k)(1 + �)k+1, and � = 1=(1 +�)2to obtain the desired
laim.We now analyze the stret
h
ontribution of the jobs in �-spt's queue at time t. Our
omparisonis with a s
hedule S that minimizes the total stret
h
ontribution of all jobs in the queue of S attime t. As we have argued earlier (in the analysis of �-srpt), we
an assume without loss ofgenerality that none of the jobs in the queue of S at time t have been pro
essed sin
e their release.It follows from Lemma 4.7 that the stret
h
ontribution of jobs in [k�0 ~St(k) is at most (1 + �)2times the stret
h
ontribution of the jobs in S at time t. (In the pre
eding argument, we have usedthe fa
ts that the size of ea
h job in ~St(i) is at least (1 + �)i while the size of ea
h job in S0t(i) isat most (1 +�)i+1.) Thus, added over time, the stret
h
ontribution of the jobs in [k�0 ~St(k), is atmost (1 + �)2S�.We now
onsider the stret
h
ontribution of the partially exe
uted jobs in �-spt at time t. Wenote that this
ontribution is at most (1 + �)=� times that of the partially exe
uted job in thesmallest numbered nonempty group; this job is the one that is exe
uted at time t. Sin
e the stret
h
ontribution of the job that is being pro
essed, when added over all times, is at most n, it followsthat the total
ontribution of partially exe
uted jobs is at most (1 + 1=�)n. We thus obtain thatthe total stret
h of �-spt is at most (1 + �)2S� + (1 + 1=�)n, whi
h is O(S�) for
onstant � > 0,sin
e S� � n. For � = 1, the total stret
h is at most 4S� + 2n, and thus has a
ompetitive ratioof at most 6. The minimum bound on the
ompetitive ratio is a
hieved when � = 0:565; for thisvalue of �, the
ompetitive ratio is at most 5.22.While �-spt is near-optimal with respe
t to average stret
h, its
ompetitive ratio with respe
tto average
ow is
(log�), as exempli�ed by the following instan
e. For
on
reteness, we �x � = 1,and ` to be power of 2. Consider a sequen
e of ` � log ` + 1 jobs of size 2k, log ` � k � `, thatarrive as follows: the job of size 2k arrives at time (Pk<i�` 2i)� (`� k). Finally, `� 1 time unitsafter the arrival of the job of size `, a sequen
e of a large number, M , of unit-size jobs arrive oneafter another at
onse
utive time steps. From the de�nition of 1-spt, it follows that when the jobof size 2k arrives, the algorithm will preempt the job that is
urrently being exe
uted and beginpro
essing the job of size 2k. When the sequen
e of unit-size jobs start arriving, the queue of 1-spt
onsists of ` � log ` + 1 un�nished jobs, ea
h having one unit of remaining pro
essing time left.Ea
h of the `� log `+1 jobs is made to wait until the entire sequen
e of unit-size jobs is
ompleted.Consequently, the average
ow a
hieved by 1-spt is
(`M + 2`). On the other hand, suppose wes
hedule the jobs in the following priority order: the �rst ` � log ` jobs in order of their releasetimes, then the M unit-sized jobs in order of their release times, and �nally the job of size `. Thetotal
ow of the pre
eding s
hedule is O(M+2`). By settingM � 2` and noting that ` = �(log�),we establish the
laimed lower bound on the
ompetitive ratio of 1-spt.25

The primary reason for the failure of �-spt to perform well with respe
t to average
ow is thata job with a large pro
essing time and very small remaining pro
essing time may be given lowerpriority than a job with shorter pro
essing time that has just been released. Sin
e the informationabout pro
essing times is only a

urate up to a fa
tor of 1+�, the algorithm does not have a goodestimate on the remaining pro
essing time of the jobs being partially exe
uted. In fa
t, the rangefor the estimate
ould be a
onstant fra
tion of the pro
essing time. To see this, we
onsider � = 1;when 2i � 1 units of a job with birth group i is exe
uted, the remaining pro
essing time
ould beanywhere in the range [1; 2i℄.In re
ent work [13℄, an interesting re�nement of �-spt has been shown to a
hieve an O(1)
ompetitive ratio with respe
t to average
ow. In this re�nement, the algorithm tends to s
hedulejobs in the smallest nonempty birth group, yet maintains the
onstraint that the number of partiallys
heduled jobs is within a
onstant fra
tion of the total number of jobs in the queue.Referen
es[1℄ F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, I. Milis, M. Queyranne, M. Skutella,C. Stein, and M. Sviridenko. Approximation s
hemes for s
heduling to minimize average
ompletion time with release dates. In Pro
eedings of the 40th Annual IEEE Symposium onFoundations of Computer S
ien
e, pages 32{43, O
tober 1999.[2℄ K. R. Baker. Introdu
tion to Sequen
ing and S
heduling. Wiley, New York, 1974.[3℄ H. Bast. Dynami
 s
heduling with in
omplete information. In Pro
eedings of the 10th AnnualACM Symposium on Parallel Algorithms and Ar
hite
tures, pages 182{191, 1998.[4℄ H. Bast. On s
heduling parallel tasks at twilight. Theory of Computing Systems, 33:489{563,2000.[5℄ M. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and stret
h metri
s for s
heduling
ontinuous job streams. In Pro
eedings of the 9th Annual ACM-SIAM Symposium on Dis
reteAlgorithms, pages 270{279, January 1998.[6℄ M. Bender, S. Muthukrishnan, and R. Rajaraman. Improved algorithms for stret
h s
heduling.In Pro
eedings of the 13th Annual ACM-SIAM Symposium on Dis
rete Algorithms, pages 762{771, January 2002.[7℄ C. Chekuri and S. Khanna. Approximation s
hemes for preemptive weighted
ow time. InPro
eedings of the 34th Annual ACM Symposium on Theory of Computing, pages 297{305,2002.[8℄ C. Chekuri, S. Khanna, and A. Zhu. Algorithms for minimizing weighted
ow time. InPro
eedings of the 33rd Annual ACM Symposium on Theory of Computing, pages 84{93, 2001.[9℄ A. Goel, M. Henzinger, S. Plotkin, and E. Tardos. S
heduling data transfers in a network andthe set s
heduling problem. In Pro
eedings of the 31st Annual ACM Symposium on Theory ofComputing, pages 189{197, Atlanta, Georgia, May 1999.[10℄ M. Har
hol-Balter, M. Crovella, and C. Murta. Task assignment in a distributed server.Journal of Parallel and Distributed Computing, 59:204{228, 1999.26

[11℄ B. Kalyanasundaram and K. Pruhs. Minimizing
ow time non
lairvoyantly. In Pro
eedings ofthe 38th IEEE Symposium on Foundations of Computer S
ien
e, pages 345{352, 1997.[12℄ B. Kalyanasundaram, K. Pruhs, and M. Velauthapillai. S
heduling broad
asts in wirelessnetworks. In Pro
eedings of the Annual European Symposium on Algorithms, pages 290{301,2000.[13℄ T. Leighton, January 2003. Personal
ommuni
ation.[14℄ S. Leonardi and D. Raz. Approximating total
ow time on parallel ma
hines. In Pro
eedingsof the 29th Annual ACM Symposium on Theory of Computing, pages 110{119, May 1997.[15℄ R. Motwani, S. Phillips, and E. Torng. Non
lairvoyant s
heduling. Theoreti
al ComputerS
ien
e, 130:17{47, 1994.[16℄ S. Muthukrishnan and R. Rajaraman. An adversarial model for distributed dynami
 loadbalan
ing. Journal of Inter
onne
tion Networks, 3:35{47, 2002.[17℄ S. Muthukrishnan, R. Rajaraman, A. Shaheen, and J. Gehrke. S
heduling to minimize averagestret
h. In Pro
eedings of the 40th Annual IEEE Symposium on Foundations of ComputerS
ien
e, pages 433{442, O
tober 1999.A An algebrai
 inequalityLemma A.1 Let ai; bi, 0 � i < n, denote two sequen
es of reals that satisfy the following inequalityfor 0 � i < n. X0�k�i ak � X0�k�i bk (14)Then, for any positive real � < 1, we have, for 0 � i < n,X0�k�i ak�k � X0�k�i bk�k (15)Proof: The proof is by indu
tion on i. For the base
ase, we let i = 0. For this
ase, Equation 15follows from Equation 14. For the indu
tion step, we
onsider index ` > 0. We now invoke theindu
tion hypothesis, multiply Equation 15 by (1 � �)��i, for ea
h i < `, and add the resultinginequalities together to obtainX0�i<`(1� �)��i X0�k�i ak�k � X0�i<`(1� �)��i X0�k�i bk�k:Rearranging the order of the summation on both sides of the inequality, we obtainX0�k<`(1� �)ak�k Xk�i<`��i � X0�k<`(1� �)bk�k Xk�i<`��i;leading to Xk<` ak(�k�` � 1) � Xk<` bk(�k�` � 1) (16)Adding Equation 14, with i repla
ed by `, and Equation 16 and multiplying by �` yields the desiredinequality for the indu
tion step. 27

