Approximation Algorithms for Average Stretch Scheduling*

Michael A. Bender! S. Muthukrishnan® Rajmohan Rajaraman?®

July 22, 2003

Abstract

We study the basic problem of preemptive scheduling of a stream of jobs on a single processor.
Consider an online stream of jobs, and let the ith job arrive at time r(i) and have processing
time p(i). If C(i) is the completion time of job i, then the flow time of i is C'(i) — r(i) and
the stretch of i is the ratio of its flow time to its processing time; that is, % Flow time
measures the time that a job is in the system regardless of the service it requests; the stretch
measure relies on the intuition that a job that requires a long service time must be prepared to
wait longer than jobs that require small service times.

We present improved algorithmic results for the average stretch metric in preemptive unipro-
cessor scheduling. Our first result is an offline polynomial-time approximation scheme (PTAS)
for average stretch scheduling. This improves upon the 2-approximation achieved by the online
algorithm srpT that always schedules a job with the shortest remaining processing time. In
recent work, Chekuri and Khanna [7] have presented approximation algorithms for weighted
flow time, which is a more general metric than average stretch; their result also yields a PTAS
for average stretch. Our second set of results considers the impact of incomplete knowledge of
job sizes on the performance of online scheduling algorithms. We show that a constant-factor
competitive ratio for average stretch is achievable even if the processing times (or remaining
processing times) of jobs are known only to within a constant factor of accuracy.

1 Introduction

We consider the basic uniprocessing scheduling scenario. We have a single processor that processes
jobs as they arrive online. The ith job arrives at time r(i) and has processing time p(i) that is
known at the time of its arrival. We restrict our attention to scheduling with preemption; that is,
jobs may be stopped before their completion and resumed later after other jobs get executed in the
interim.

Traditionally, the focus of performance has been on the flow time (also referred to as the response
time), which is defined as the amount of time that a given job spends in the system. That is, if C(7)
is the completion time of job i, then the flow time is C'(i) — r(i). Alternatively, practitioners have
used slowdown or stretch to measure the effect of scheduling on an individual job (e.g., [10]. The

stretch of a job is the ratio of its flow time to its processing time; that is, % [5]. Stretch is

'"Department of Computer Science, SUNY at Stony Brook, NY 11794, Email: bender@cs.sunysb.edu.

?Department of Computer Science, Rutgers University, Piscataway, NJ 08854, Email: muthu@cs.rutgers.edu.
Part of this work was done while the author was at AT&T Shannon Laboratories, Florham Park, NJ 07932.

3College of Computer & Information Science, Northeastern University, Boston, MA 02115, Email:
rraj@ccs.neu.edu. Supported by NSF CAREER award NSF CCR 9983901.

*The results of this paper appeared earlier in an extended abstract [6].

a rather natural criterion: jobs that require large processing time must be prepared to wait longer
than the ones that need the system for less time.

Overview of our results. We present improved algorithmic results for the average stretch
metric, or, equivalently the total stretch metric?, in preemptive uniprocessor scheduling.

e PTAS for average stretch: We present a polynomial time approximation scheme (PTAS) for
minimizing average stretch offline. For any constant € > 0, our algorithm yields an (1 + €)-
approximation in O(nPOLY(1/9)) time.

Our PTAS result, which appears in Section 3, improves on the approximation factor of 2
achieved by the online shortest remaining processing time algorithm (SRPT). Furthermore,
there exists a constant ¢ > 1 such that no online algorithm can achieve a competitive ratio
of better than ¢ [17].

Our approach for developing a PTAS for average stretch is to round the job sizes to the nearest
integral power of (1 + ¢), thus dividing the jobs into groups, and then scheduling the groups from
the smallest rounded job size to the largest. Scheduling one group of jobs, however, constrains the
times at which other groups of jobs may be scheduled. Designing a (1+ ¢)-approximate schedule for
such “constrained” scheduling problems poses a key challenge in the design of a PTAS. The heart
of our result, which is presented in Section 3, is a useful characterization of (1 + €)-approximate
schedules that reduces the size of the search space of relevant schedules.

The technique of rounding job sizes, which is used in our PTAS, is a commonly-used tool and
is effective in reducing the space of schedules of interest to yield efficiently computable schedules.
Rounding also has great practical significance. Traditionally, scheduling algorithms assume com-
plete knowledge (clairvoyance) of the processing times of the jobs. In practice, however, estimating
job sizes cannot be accurate in general. So a more reasonable approach is to assume that the upper
and lower bounds on the job sizes are known that are correct up to a constant factor. In Section 4,
we analyze the average stretch and flow performance of two natural on-line algorithms that schedule
jobs on the basis of the rounded wvalues of the remaining processing times, and processing times,
respectively.

e Study of the impact of rounding: We first analyze a generalization of SRPT, referred to as
A-SRPT, which schedules in each step a job with remaining processing time within a (1 + A)-
factor of the shortest remaining processing time, for some constant A > (0. We show that
while A-SRPT is O(1)-competitive with respect to average stretch, it is Q(log A)-competitive
with respect to average flow time, where A is the ratio of the largest job size to the smallest
job size. We then present a suitable refinement of A-SRPT that is O(1)-competitive with
respect to both average stretch and average flow time. The preceding results are applicable
in scheduling scenarios in which remaining processing times of jobs are approximately known
at each step. A more realistic model for partial knowledge of job sizes is a relaxation of the
non-clairvoyant model, in which the processing time of any job is known to within a constant
factor only at the time of the release of the job. Under this model, we show that a variant
of the shortest processing time algorithm (SPT) is O(1)-competitive with respect to average
stretch.

#The average stretch of a given schedule is the ratio of the sum of the stretches of all the jobs in the schedule, which
is the total stretch, to the number of jobs in the instance. Thus, average stretch and total stretch are equivalent, in
terms of both optimization and approximation.

Related work. This paper focuses on the online and offline complexity of stretch scheduling.
Two measures closely related to average stretch are weighted completion time and weighted flow
time, each of which associate a weight w(i) with each job i. If we set the weight of job i to
be the reciprocal of processing time (i.e., 1/p(i)), then the total weighted completion time of a
given schedule becomes), C(4)/p(i), which equals Y .(C(i) — r(2))/p(¢) + >, 7(7)/p(i) (here C (i)
is the completion time of job i in the given schedule). With the preceding weight assignment,
the total weighted completion time thus equals the total stretch plus a term (), r(¢)/p(é)), which
is independent of the schedule. Thus, optimizing weighted completion time also optimizes total
stretch, which is identical to optimizing average stretch. In terms of approximation, however, the
weighted completion time and average stretch metrics are significantly different. Consequently, the
recent PTAS for weighted completion time [1] does not yield any useful approximation for average
stretch. The average weighted flow time with weights given by the reciprocal of processing times,
on the other hand, is identical to the average stretch metric. The best known approximation result
for weighted flow time is the recent approximation scheme of [8], which takes time superpolynomial,
but subexponential, in the input size. In a subsequent study [7] performed independently of our
work, it has been shown that a quasi-PTAS is achievable for weighted flow time when A and the
ratio of the maximum weight to minimum weight are both polynomially bounded. Since [7] study
the weighted flow time metric, their results are more general than ours; when applied to the special
case of the average stretch metric, the results of [7] yield a PTAS, thus matching our result for
average stretch.

Our models for capturing incomplete information of job sizes may be viewed as relaxations
of non-clairvoyant scheduling. In non-clairvoyant scheduling, no information about job sizes is
available at release time. The competitiveness of non-clairvoyant uniprocessor scheduling, with
respect to the average flow metric, is studied in [11, 15]. Our model of uncertainty in job sizes is
related to a general framework developed in [3, 4], which also captures the variance in job sizes by
using lower and upper limits. The underlying model of job arrivals and the performance metric
studied are different, however; in [3, 4], the jobs are given at the start of the computation and need
to be scheduled on an asynchronous multiprocessor system to minimize makespan.

As mentioned at the outset, our study concerns the basic uniprocessor preemptive scheduling
setting. More complex scheduling scenarios have been studied, including multiprocessor scheduling
(e.g., [14]), broadcast scheduling (e.g., [12]), and network connection scheduling (e.g., [9]). Clearly,
some of the questions we have raised are relevant in these scenarios, and deserve further attention.

2 Preliminaries

In this section, we present some basic definitions and notation, that are used frequently in the
remainder of the paper. Let Z be a given scheduling instance. Recall that a scheduling instance is
specified by a set of jobs J, and for each job j € J, a release time r(j) and a processing time p(7).

We restrict our attention to discrete time, and assume that the release times and processing
times are all nonnegative integers. We note that any instance with rational release and processing
times can be transformed to an equivalent instance with integral release and processing times
through scaling; furthermore, the size of the transformed instance is polynomial in the size of
the original instance. In our analyses, we frequently need to refer to time intervals containing
consecutive time steps. We use the notation [t1, t5] to refer to the set of time steps {t : t; <t < t9}.

For a given schedule, the queue at a given time ¢ consists of all jobs that have been released at
or before time ¢ and not completed by time £. The remaining processing time of jobs in the queue
plays an important role in our analyses. We let p;(j) denote the remaining processing time of job j

at time ¢ in the given schedule. We say that a job j delays job j' # j at time t in a given schedule,
if j is scheduled at time ¢ and j' is in the queue at time . We overload the definition of delay and
say that a job j delays job j' if there exists any time ¢ at which j delays 7'

3 PTAS for offline average stretch

In this section, we describe a polynomial-time approximation scheme (PTAS) for the total stretch
metric (equivalently, average stretch) in uniprocessors. Our presentation is organized into 5 sub-
sections. In Section 3.1, we present an overview of our algorithm, state three key lemmas, and
derive the main result based on the key lemmas. In Section 3.2, we establish basic characteristics
of optimal schedules. In Sections 3.3 through 3.5, we prove the three lemmas stated in Section 3.1.

3.1 Overview and main theorem

We begin by introducing some notions of instances and schedules that play a central role in our
algorithm and its analysis. In the process of constructing a complete schedule for a given instance,
we derive partial schedules in which we schedule a subset of the jobs in the instance. The remaining
jobs are thus forbidden to be scheduled at the times assigned in the partial schedule. We refer to
the set of remaining jobs, their release times, and the forbidden times as a constrained instance.

A concept commonly used in scheduling is that of list schedules. A list schedule is a schedule that
assigns a priority order among the jobs; in each step of the schedule, of those jobs already released
and not yet completed, the job with the highest priority is scheduled. It is easy to show that every
optimal schedule for any constrained instance is a list schedule (Lemma 3.4 of Section 3.2). We
restrict our attention to another class of schedules, which we refer to as natural, that is well-suited
for flow and stretch metrics. We say that a schedule is natural if it satisfies the property that a job
j delays a job j' with smaller processing time at a given time ¢ only if the remaining processing
time of j at time ¢ is less than that of j’ at time £. Formally, in a natural schedule, if a job j delays
job 7" at time ¢ and p(j) > p(j'), then pi(j) < pi(5') = p(4'). It can be shown that every optimal
schedule is a natural schedule (Lemma 3.5 of Section 3.2).

We divide the jobs into groups such that the sizes of the jobs within a group differ from one
another by a factor of at most (1 +), where ¢ > 0 is an arbitrary constant. Formally, for any
nonnegative integer 4, let group i consist of all jobs with size at least (1+¢)* and less than (1+4¢)*!.
To motivate our algorithm and to facilitate the analysis, we introduce the notion of rounded stretch.
The rounded stretch of a job 7 in a given schedule is the ratio of the flow time of j in the schedule
to (1 4 ¢)?, where i is the group to which j belongs. Since the processing time of a job in group i
is at least (1+¢)® and at most (14 ¢)**!, it follows that the rounded stretch of a job in a schedule
is within a factor of 1 4+ ¢ of the actual stretch of the job in the schedule. We define the rounded
cost of a schedule to be the sum of the rounded stretch of all the jobs in the schedule. Thus, the
rounded cost of a schedule is within a (1 + ¢) factor of the actual cost of the schedule.

We henceforth adopt rounded cost as our objective function. Thus, unless otherwise stated,
whenever we refer to an optimal schedule, we refer to a schedule with minimum rounded cost.
A naive approach to minimizing rounded cost for a given constrained instance is to assign equal
“weight” to each job within a group and schedule the jobs within the group in FIFO order. It turns
out, however, that the resultant schedule can have cost twice that of the optimal. It can be shown
instead that in a schedule with optimal rounded cost, the jobs within a group need to be scheduled
in SRPT order. We refer to such schedules as SRPT-friendly schedules. In Section 3.2, we show that
every optimal schedule is SRPT-friendly (Lemma 3.6).

The notion of SRPT-friendly schedules allows us to assign an ordering among jobs within a group,
that is among jobs that have similar processing times. At the other end, we can argue that if we
have two jobs, one of which is “substantially larger” than the other, then a schedule that optimizes
total stretch tends to favor the smaller job. We formalize the notion of “substantially larger” by
partitioning the groups into blocks and superblocks as follows. Block i, for 7 > 0, consists of groups
ig through (i+1)g—1, where g equals log;, (1/¢?). For simplicity, we assume throughout Section 3
that 1/¢ is an integer. All our arguments can be easily modified to address the case where 1/¢ is
non-integral. It follows from the definition of a block that the size of any job in block i is at least
1/€? times the size of any job in block j for any j < i — 1. We further partition the blocks into
superblocks. Superblock 0 consists of blocks 0 through b — 1, where b < 1/ is specified below.
Superblock 4, for i > 0, consists of blocks b + (i — 1)/ through b +i/e? — 1. We select b such
that the total number of jobs in the largest numbered blocks of all of the superblocks is at most
ne?. We note that since there are 1/£2 choices for b, one such choice exists. For any group i, we let
blk(7) (resp., spr(i)) denote the block (resp., superblock) to which i belongs. For any superblock s,
we let grps(s) and blks(s) denote the groups and blocks, respectively, in superblock s.

Our organization of the jobs in groups, blocks, and superblocks has the property that for any
superblock i, jobs in every block of i, but for the largest numbered block, have size at most €2 times
that of any job in superblock 5 for 5 > 4. Furthermore, the total number of jobs in the largest
numbered blocks of all superblocks is at most ne?. In the following lemma, we make use of the
preceding properties to argue that in our search for an (1 + O(e))-approximate schedule, we can
restrict our attention to schedules in which no job in superblock 7 delays a job in superblock j < 1,
for any i; we refer to such schedules as hierarchical schedules.

Lemma 3.1 For any € > 0 chosen sufficiently small, there exists a (1 + 3¢)-approzimate natural
SRPT-friendly list schedule that is hierarchical.

Lemma 3.1 allows us to divide the given instance into several independent constrained instances,
each of which contains jobs belonging to one superblock only. A superblock contains jobs belonging
to a constant number of groups. We are able to show that since the optimal schedule for a superblock
is natural and sSrRPT-friendly, we can divide the given instance into a sequence of constrained
instances, in each of which there is exactly one job from the largest numbered group. Unfortunately,
this alone does not significantly limit the number of different schedules for one of these instances.
We overcome this hurdle by showing that we can restrict our space of schedules to those schedules
in which a particular job (in our case, the lone job from the highest numbered group) delays at
most ¢ smaller jobs, while incurring an increase in rounded cost of at most (1 4+ 1/¢), for any given
positive integer c.

Lemma 3.2 Let Z be any constrained instance. Let m denote the largest group number of any job
in L. Furthermore, suppose that there is exactly one job j from group m in . Then, given any
positive integer ¢, any natural list schedule for T can be transformed into another list schedule in
which j delays at most ¢ smaller jobs, while incurring an increase in rounded cost by a factor of at
most 1+ 1/c.

Lemma 3.2 and an enumeration of schedules of interest establishes the following claim, that
forms the final piece of the algorithm.

Ok/9)_time algorithm to determine a (1 + §)k-

approximate schedule for any constrained instance with k groups, where n is the number of jobs in
the given instance.

Lemma 3.3 For any § > 0, there exists an n

Using Lemmas 3.1 and 3.3, we now prove the main theorem of this section.
Theorem 1 There exists a PTAS for average stretch scheduling.

Proof: Let Z denote the given instance. Let s denote the number of superblocks. Without loss
of generality, we assume that the superblocks are numbered 0 through s — 1. For 0 < i < s, let Z][i]
denote the sub-instance of Z consisting of jobs in superblocks 0 through 7 — 1.

Our algorithm consists of iteratively going through the superblocks, from the smallest to the
largest job sizes, and applying the algorithm of Lemma 3.3 to each superblock as follows. Let S;
denote the schedule obtained at the start of iteration ¢ (we count iterations from 0). Note that Sy is
the empty schedule. We let C; denote the constrained instance consisting of the jobs in superblock
1, with the forbidden times being the set of time steps in which the schedule S; schedules a job.
In iteration 4, we apply the algorithm of Lemma 3.3 to the constrained instance C;. Let S denote
the schedule obtained for the constrained instance. We obtain S;;1 by merging the two schedules
S; and §; that is, a job is scheduled at time ¢ in S;;1 if it is scheduled at time ¢ in exactly one of
S; or §. Since the set of times when a job is scheduled in S is disjoint from the set of times when
a job is scheduled in §;, S§;11 is a well-defined schedule for the jobs in superblocks 0 through 4. If
s is the number of superblocks in the given instance, then S; is the final schedule obtained by the
algorithm.

We now analyze the approximation ratio achieved by the algorithm. We argue that the schedule
S, is a (1 + 7e)-approximate schedule, for ¢ > 0 sufficiently small. This argument is in two parts.
We first prove, by induction on i, that S; is a (1 + 2¢)-approximate schedule for the instance Z[i]
among all hierarchical schedules. For the base case, we let 1 = 0, and the claim holds trivially.
For the induction step, we note that any hierarchical schedule for the instance Z[i] consists of two
disjoint schedules: one for the instance Z[i —1] and the other for the instance C;_;. By the induction
hypothesis, S;_1 is a (1 4+ 2¢)-approximate schedule for Z[i — 1] among all hierarchical schedules.
Superblock i — 1 consists of at most g/e? groups where g = log;.(1/e?) < 2lg(1/e)/e, for e
sufficiently small. Applying Lemma 3.3 to constrained instance C; ; with ¢ equal to e*/(21g(1/¢))
and k equal to 21g(1/¢)/e3, we obtain that the schedule S obtained in iteration i is a (1 + 2¢)-
approximate schedule for C;_1, as shown in the following:

! 21g(1/e)/e?
) <ef < (14 2e),

(1 T g(1/e)

for € > 0 sufficiently small. Thus, the schedule §;, which is obtained by merging the schedules S;
and S, is a (1 + 2¢)-approximate schedule for Z[i] among all hierarchical schedules. This completes
the induction step.

For the second part of the approximation ratio argument, we invoke Lemma 3.1 to obtain
that there exists a hierarchical schedule whose total stretch is at most (1 4+ 3¢) of the optimum
rounded stretch, taken over all schedules. Thus, the total rounded stretch of schedule S; is at
most (1 + 2¢)(1 + 3¢) times the optimal total rounded stretch. Since the total stretch is within
(1+¢) of the total rounded stretch, the approximation factor achieved by our algorithm is at most
(14+¢€)(1 4+ 2¢)(1 + 3¢e) < (1 + Te), for any positive constant € sufficiently small.

We now analyze the running time of the algorithm. By Lemma 3.3, the running time for
iteration 7 is a polynomial in the number of jobs in superblock i with exponent O(1/(71g%(1/¢))),
for € > 0 sufficiently small. Adding over all iterations, we obtain that the total running time is
nO0/E" ng(l/g))), where n is the total number of jobs. We thus have a PTAS for average stretch

scheduling.]

The remainder of this section is organized as follows. Section 3.2 establishes certain character-
istics of optimal schedules. Sections 3.3, 3.4, and 3.5 establish Lemmas 3.1, 3.2, and Lemma 3.3,
respectively.

3.2 Natural srpT-friendly list schedules

The following two lemmas apply to optimal schedules with respect to both stretch and rounded
stretch.

Lemma 3.4 For any constrained scheduling instance, every optimal schedule is a list schedule.

Proof: Let S be a schedule that has optimal total stretch (or rounded stretch) and yet is not a
list schedule. Since S is not a list schedule, it follows that there exist two jobs 7; and j9 and a time
step ¢ such that j; finishes before jo and yet at time step ¢ that occurs after the release of and prior
to the completion of j;, j5 is executed. We modify the schedule S to obtain a new schedule 8’ with
smaller cost as follows. S’ is the same as S except that j; is scheduled at time ¢ and j5 is scheduled
at the time step when j; completes in S. Since j; completes earlier in &’ than in S and all other
jobs complete at exactly the same times, S’ has lower cost than S, thus yielding a contradiction. H

Lemma 3.5 For any constrained scheduling instance, every optimal schedule is a natural schedule.

Proof: Let S be a given optimal schedule that is not natural. Let j be a job that delays a smaller
job j' executed at time £, and let ¢ be the earliest such time. We first derive a contradiction if
pe(3) > pe(4'). Since S is a list schedule, j completes before j'. Consider the time steps starting
from t at which either j or j' is executed. During these steps, j is first executed and then ;. We
swap the order to obtain a new schedule &’. The completion time of j' in 8 is earlier than the
completion time of j in § and the completion time of j in S’ is identical to that of 5’ in S. Since
p(3') < p(j), it follows that the total cost of S’ is less than that of S, thus yielding a contradiction.

We next show that p:(j') < p(j') is also impossible. By Lemma 3.4, the optimal schedule is a
list schedule. Since t is the first time step that j' is delayed by j, it follows that j is not scheduled
during the period [r(j'),t — 1]. If pi(5') < p(j'), then j' is scheduled at least once during this
interval, giving it higher priority over j in the schedule. Since j is scheduled ahead of j' at time t,
this yields a contradiction to the fact that S is a list schedule. |

Consider a schedule that minimizes total rounded cost. Since the rounded cost assigns equal
“weights” to all of the jobs in the same group, scheduling within a group in an optimal schedule
minimizes the total flow time of the jobs subject to constraints placed by jobs outside the group.
We establish the following lemma by arguing that every schedule that minimizes total flow time is
an SRPT schedule.

Lemma 3.6 For any constrained instance, every schedule that optimizes rounded cost is SRPT-
friendly.

Proof: Let 7 be a given constrained instance and let S be a schedule for Z that optimizes rounded
cost and yet is not SRPT-friendly. Fix a group in which the jobs do not execute in SRPT order. Let
G denote the set of jobs in the group. Consider the constrained scheduling instance Z’, in which the
set of jobs is G and the set of allowable times is exactly the set of times during which these jobs are
scheduled in S. Since S optimizes rounded cost, it follows that when restricted to the constrained
instance Z', S optimizes total flow time. We now argue that this leads to a contradiction. Our
proof resembles closely the proof of the well-known result that SRPT optimizes total flow time for
arbitrary (unconstrained) scheduling instances [2].

Let ¢ be the earliest time instant when S schedules a job j € G, while a job j' € G with lower
remaining processing time is in the queue at time ¢ (i.e., p;(j5') < pt(4)). By our assumption that
S is not srRPT-friendly, such a time instant exists. Let 7' denote the set of time intervals during
the period [t,00) when either job j or job j' is scheduled in S. Thus, the total length of T equals
pt(3") + pe(4). Consider the schedule 8" which is identical to S except that during T', we completely
schedule the remainder of j (which equals p;(j')) and then the remainder of j' (which equals p;(7)).
Since p;(7') < pi(4), it follows that the completion time of 5’ in &’ is less than the completion time
of j in 8, while the completion time of j in &’ is at most the completion time of 5 in S. Since
the total flow time is the sum of completion times minus the sum of release times, it follows that
schedule S’ has a smaller total flow time than S for instance Z', yielding a contradiction. The
desired claim follows. |

3.3 Eliminating delays of small jobs by larger jobs

In this section, we prove Lemma 3.1. Given a constrained instance / and a natural SRPT-friendly
list schedule S for I, we derive a natural SRPT-friendly list schedule in which no job in superblock
1 delays any job in superblock j for 7 < 4, while incurring a cost increase by a factor of at most
(1+2¢).

Let m denote the largest group index in I such that a job in group m delays a job in superblock
spr(m) —1 or lower. (Recall that spr(m) is the superblock to which group m belongs.) We describe
a sweep procedure by which we convert S into a new natural SRPT-friendly list schedule in which no
job in group m delays any job in superblock spr(m) — 1 or lower. The sweep procedure consists of
the repeated application of a local reordering procedure which ensures that a particular job in group
m does not delay any job in superblock spr(m) — 1 or lower; this job is the first job in group m
that delays some job in superblock spr(m) — 1 or lower, according to schedule S. We first describe
the local reordering procedure and then the sweep procedure.

Local reordering. Let ¢ be the earliest instant at which a job j in group m delays a job in
superblock spr(m) — 1 or lower. Let ¢’ be the earliest time step after ¢ at which there are no jobs
from superblock spr(m) — 1 or lower in the queue. We now claim that at every time step in the
interval [t,¢' — 1], either j or some job in superblock spr(m) — 1 or lower is executed. The proof
is by contradiction. Let ¢; be the earliest time in [¢t,#' — 1] at which a job other than j, say ji,
belonging to superblock spr(m) or higher is executed. We show that p;, (j1) > min{p(j1),p(j)}-
We consider different cases:

e 7(j1) > t: This implies that j; is executed for the first time at time ¢1; that is, py, (j1) = p(j1)-

(51) >
e r(j1) <t, p(j1) < p(j): Since j delays j; at time ¢ and S is natural, it follows that pi(j1) =
p(71). This implies that j; is executed for the first time at time #1; thus, py, (j1) = p(j1).

e 7(j1) < t,p(j1) > p(j): Since no job in a group higher than m delays any job in superblock
spr(m) — 1 or lower, we obtain in this case that j; is in group m. Since S is a list schedule and
j is scheduled at time ¢, it follows that during the interval [r(j),¢ — 1], j1 is not scheduled. If
7(j) > r(j1), then since S is sRpT-friendly, it follows that p:(j1) = p,(;)(j1) > p(j). On the
other hand, if r(j) < 7(j1), then j; has not been scheduled until time ¢, which implies that
pt(71) = p(41) > p(j). Since t; is the first time in the interval [t, ' — 1] that j; is scheduled,
it follows that py, (j1) = pi(j1) > p(j)-

For each of the above (exhaustive) cases, we have shown that p;, (j1) > min{p(j1),p(j)}. Since ¢
is in [t, ¢’ — 1], it follows from our choice of ¢’ that there exists at least one job jo from superblock i,

i < spr(m), in the queue at time ¢;. We thus have a job j; in superblock spr(m) delaying a job j;
in a superblock i, i < spr(m), even though the remaining processing time of j; at time #; is greater
than that of jo. Formally, we have py, (j2) < p(j2) < min{p(j),p(51)} < pi, (41). This contradicts
our assumption that S is a natural schedule.

We next observe that since S is a list schedule and j delays some job in superblock spr(m) — 1
or lower at time ¢, j completes before time #'. Let J denote the set of jobs other than j that are
executed in the interval [¢,¢' — 1]. We modify the schedule so that j is given a priority lower than
any job in J, and the jobs in J are scheduled according to an optimal SRPT-friendly, natural list
schedule within [t,#']. Let S’ denote the new schedule obtained. We refer to this procedure as the
reordering procedure, and write 8’ = R(S). We also call J the set of promoted jobs. Note that in
&', the total rounded stretch of the jobs in J is at most that in S, while the completion time of j
is at most ¢'. Therefore, the increase in rounded cost is at most 3. ; p(j')/p(4)-

Lemma 3.7 The schedule S' is an SRPT-friendly natural list schedule.

Proof: We first argue that the schedule &’ is a list schedule. The completion time order for S
consists of a sequence Jp, followed by j, followed by a permutation 7 of the jobs in J, followed
by another sequence Jy. Instead, the completion time order for S’ consists of Ji, followed by a
permutation 7’ of the jobs in .J, followed by j, followed by another sequence J,. It is easy to see
that the jobs are executed in the same priority order. Therefore, S’ is a list schedule.

We next argue that the schedule S’ is an SRPT-friendly schedule. The only jobs that are
scheduled differently in 8’ than in S are in the set J U {j}. Consider job j. Since j is the first job
in group m to complete after time ¢ in S, it follows that the processing within group m is done
in SRPT order in &’. All of the jobs in J are completely executed in the interval [t,#'] and their
scheduling is sSRPT-friendly by construction. Therefore S’ is SRPT-friendly.

We finally argue that S’ is a natural schedule. Since S is a natural schedule and S’ differs
from S only in the jobs scheduled during the interval [¢,¢' — 1], we need to consider the executions
performed under &’ during the interval [, — 1] only. Let #; be any time instant in [¢,¢' — 1]. We
consider two cases.

e Case 1: Job j is scheduled at time #; in §’. Consider a job j; in the queue at time ;. We
need to argue that if p(j1) < p(j). then py, (5) < pi, (1) = p(j1). Suppose that p(j1) < p(4).
By construction of §', j; is not from superblock spr(m) — 1 or lower. Since j is the sole
job in superblock spr(m) or higher that is scheduled in S’ during the interval [¢,¢ — 1],
pt,(31) = pe(j1). Since S is a natural schedule and S’ is the same as S outside of the interval
[t,t' — 1], we have p;(j1) = p(J1); this is because j delays j; at time ¢ in schedule S. Therefore,
pt, (71) = p(41), thus completing this case.

e Case 2: Job j' € J is scheduled at time #; in §’. The only jobs of smaller processing time
that j' delays in S8’ belong to J. By the construction of &', the schedule restricted to the jobs
in J is natural, thus completing this case.

The above two cases establish that S’ is a natural schedule, thus completing the proof of the lemma.
|

In schedule &', no job in group m delays a job in superblock 0 through spr(m) — 1 during the
time interval [0,¢ — 1]. Furthermore, S’ shares the property of S that no job in group m + 1 or
higher delays any job in a lower indexed superblock.

Sweep. We repeat the above transformation procedure with the schedule 8’ which, by Lemma 3.7,
is an SRPT-friendly natural list schedule, and continue until every job in group m delays no job

in superblock spr(m) — 1 or lower. Let S = Sy, S1 = R(Sp),...,Sk = R(Sk_1),--.,S; denote the
sequence of transformations in the sweep procedure, and let Jy = J, J1, ..., Jk, ..., Jy_1 denote the
sets of promoted jobs in each transformation. By the definition of the reordering process, the sets
Ji are all disjoint. From the cost analysis of the reordering procedure, it follows that the increase
in cost as a result of the transformation from Sy to Sgi1 is at most the ratio of the sum of the
processing times of the jobs in Ji to (1 4+ £)™. Therefore, the increase in cost due to the sweep
procedure is at most

p(y’)
ZZWS > X 1+Em11 (1)

k=0 j'€J} s<spr(m) i€ grps(s)

where n; is the number of jobs in group 7. The inequality follows from the following observations:
(a) the set UgJy contains jobs from superblocks 0 through spr(m) — 1 only; and (b) the processing
time of a job in group i is at most (1 + ¢)"*+.

The schedule S; obtained as a result of the sweep procedure is a natural SRPT-friendly list
schedule and has the property that no job in groups m or higher delay any job in a lower indexed
superblock. We now use the sweep procedure to convert a natural SRPT-friendly list schedule
into another natural SRPT-friendly list schedule in which no job in superblock ¢ delays any job in
superblock j < 4, for any %, while incurring an increase in cost by a factor of at most 1 + 2e.

1. Let m denote the highest indexed group such that a job in group m delays a job in superblock
spr(m) — 1 or lower in §. We apply the sweep procedure described above to obtain a new
SRPT-friendly natural list schedule S in which no job in group m delays any job in superblocks
spr(m) — 1 or lower.

2. We set S to S and repeat step 1.

By repeated application of Lemma 3.7, it follows that the final schedule obtained is a natural SRPT-
friendly list schedule. Furthermore, it is hierarchical; that is, no job delays a job that is in a lower
indexed superblock.

We now calculate an upper bound on the increase in cost due to the above procedure. Let m*
denote the largest group index. Let s* denote the largest superblock index. We need to sum up the
term in Equation 1 over all the groups except those that belong to superblock 0. Let mj denote
the number of jobs in block k. We bound the total increase in cost as follows:

10

ZZZZW

s'>0Legrps(s') s<s' i€grps(s)

=ZZZZW

s<s* jegrps(s) s'>s ZEgrps (s")

- L 5 e

§<s* iegrps(s) L=(b+s/e?)

ny;
< Z Z 1+6 (b+s/e2)g—i—1
s<s* jegrps(s)
D> I =
- (1 4 ¢)(b+s/e?)g—i-1 e(14¢)9!
s=0 | \i:blk(i)=b+s/e?—1 k<bts/e2—1,keblks(s) \i:blk(i)=k
s*—1 [N N
i i
: DR PR S) et
s=0 | \i:blk(i)=b+s/e?—1 k<bts/e—1,keblks(s) \d:blk(i)=k
s*—1 [92
m 2 1(1+¢ -|
< Z b+s/e 61() n Z (1—I—€)mk€
s=0 | k<b+s/e2—1,keblks(s) J
< 2n(l+e¢)e
< 3ne,

for € > 0 sufficiently small. (To obtain the second line, we change the order of summations and
note that summing over s’ > 0 and s < s’ is identical to summing over s < s* and s’ > s. The third
line follows from the fact that the first group index in superblock s + 1 is (b+ s/£2)g. In the fourth
line, we use the inequality > .., 1/(1+ g)! < 1/e. In the fifth line, we separate the summation over
groups in superblock s to two summations, one over groups in the last block in superblock s, and
the other over groups in the remaining blocks in superblock s. In the last step, we use the fact that
the number of jobs in the largest numbered blocks of all of the superblocks is at most ne?.)

Since the rounded stretch of any job is at least 1, the total rounded stretch of any schedule is
at least n. Thus, the increase in cost as a result of the transformation is at most by a factor of
(1 + 3¢). This completes the proof of Lemma 3.1.

3.4 Bounding the number of smaller jobs delayed by a job

In this section, we prove Lemma 3.2. Let S be the given natural list schedule for a given constrained
instance I. Let m be the largest group number in § and let j denote the lone job from group m
in S. Let ¢ be a given positive integer. The goal is to determine a list schedule S’ for I of cost
at most (1 + 1/c) times the cost of S such that j delays no more than ¢ jobs in &’ with smaller
processing time than j.

Let t denote the earliest time step at which j delays more than ¢ jobs with smaller processing
time. Let ¢’ denote the earliest time step after ¢ in which there are exactly ¢ jobs smaller than j in
the queue. Thus, at least one of the ¢ jobs that are delayed by j at time ¢ complete at or before
time t'. Since S is a list schedule, we obtain that j completes before time #'. Let .J denote the set
of ¢ jobs smaller than j that are in the queue at time ¢'. We claim that none of the jobs in .J is
scheduled until time #'. The proof is by contradiction. Let j' be a job in J that is executed at time

11

t1 prior to t'. We first argue that t; > t. If r(j') > ¢, then the preceding claim is trivial; otherwise,
since S is a natural schedule and j delays j' at time ¢, p;(j') = p(j'), thus implying that t; > t.
Since j' is executed at time #; € (¢,t'), at time £, there are greater than ¢ jobs in the queue that are
smaller than j. Since j' is still in the queue at time #', the remaining at least ¢ jobs smaller than
7 in the queue at time ¢; should also be in the queue at time ¢’ because S is a list schedule. But
there are only c jobs in the queue at time #' that are smaller than j, thus yielding a contradiction.
It follows that all of the jobs that are scheduled during the interval [¢,¢' — 1] complete prior to time
t.

We modify the schedule S to derive schedule S’ as follows. During the interval [¢, ¢ — 1], we
assign a priority to j higher than all jobs in J and lower than all other jobs. Subject to this
constraint, we derive the best schedule for the remaining jobs that complete during the interval
[t,t' — 1] in S. First, since &' is obtained by merely rescheduling the processing performed during
the interval [t,¢' — 1], it follows that all of the jobs, including j, that are scheduled in 8" during
the interval [¢,¢#' — 1] complete prior to time ¢'. Since j has least priority among these jobs, the
increase in rounded cost as a result of the transformation from S to S’ is at most (£ —t)/(1+¢)™.
In schedule S, there are at least ¢ jobs in groups m — 1 or lower at each instant in [¢,¢' — 1]. Thus,
the rounded cost of S is at least c(t' —¢)/(1 + &)™ !. Therefore, the rounded cost of S’ is at most
(1 +1/c¢) times the rounded cost of S.

We note that the resultant schedule obtained may not be a list schedule. We convert S’ into a
list schedule L(S’) by assigning priorities to each job according to their completion times. In the
following lemma, we argue that the rounded cost of schedule L(S’) is at most that of §’. We also
show that the number of jobs delayed by 7 does not increase; hence, it remains at most c¢. This
completes the proof of Lemma 3.2.

Lemma 3.8 Let S be a schedule for a given constrained instance and let L(S) denote a list schedule
obtained by scheduling every job in the constrained instance in order of their completion times in
S. The rounded cost of L(S) is at most that of S. Furthermore, the number of jobs delayed by a
job j in L(S) is at most the number of jobs delayed by j in S.

Proof: Suppose the jobs complete in S in the order ji, j2, ..., j¢, where £ is the number of jobs
in the given instance. We claim that for 1 < ¢ </ and any time ¢, the total amount of time during
the interval [0, ¢] that the jobs j; through j; are scheduled in L(S) is at least the corresponding
time in S. This is because for any ¢ and any available time instant, a job in the set {j1,...,j¢} is
scheduled in L(S) at time ¢ if it has been released and not yet complete. Applying the preceding
claim inductively in the order j; through j;,, we obtain that the completion time of any job j in
L(S) is at most that in . Since the rounded stretch of a job is the ratio of the difference between
the completion time and the release time to the rounded processing time, the rounded cost of the
schedule L(S) is at most that of S. This completes the proof of the first part of the lemma.

For the second part of the lemma, it is enough to observe that the priority order among the
jobs in schedule L(S) implies that a job j can never delay a job that completes earlier than j in S.
Furthermore, if in L(S) ;7 delays a job 5’ that completes later than j in S, then the release time of
4" is before the completion time of j in S, implying that j delays j' in S. Thus, the number of jobs
that j delays in L(S) is at most the number of jobs that j delays in S. [|

3.5 An approximation algorithm for a constant number of groups

The final step of the algorithm is a polynomial-time approximation algorithm for any constrained

scheduling problem with a constant number of groups. More precisely, we give an n?*/9_time

12

algorithm to determine a (1 + §)*-approximate schedule for an instance with k groups, for any
positive real 4. Without loss of generality, we assume that 1/0 is an integer.

Our algorithm is based on enumerating schedules of interest and selecting the schedule of least
rounded cost. Given a schedule, the rounded cost of the schedule can be calculated in O(n) time.
Therefore, the algorithm can be described by specifying the schedules that are enumerated and
their number. Our algorithm is recursive, and we develop an inductive proof of its correctness
along with the algorithm description. We show, by induction on the number of groups, that our
algorithm enumerates O(n*/%t*) schedules for an instance with k groups, at least one of which is
(1 + &)F-approximate.

Base case. The base case is when k£ = 1. In this case, our algorithm returns an SRPT schedule.
We first argue that every SRPT schedule has the same rounded cost. We note that the multiset of
remaining processing times of all jobs at any time in any two SRPT schedules is identical since any
SRPT schedule decrements the remaining processing time of a job with least remaining processing
time in each step. It thus follows that the multisets of completion times of the jobs in any two SRPT
schedules are identical. The rounded cost is the difference of the sum of the weighted completion
times and the sum of the weighted release times, where the weight is equal to the reciprocal of
the rounded job size. Since all the jobs belong to the same group, they have the same weight,
implying that the sum of the weighted completion times and the sum of the weighted release times
are, respectively, the same for any two SRPT schedules. Thus, every SRPT schedule has the same
rounded cost.

By Lemma 3.6, every optimal schedule is an sSRPT-friendly schedule. Since the instance has one
group only, every SRPT-friendly schedule is an SRPT schedule. Since all SRPT schedules have the
same rounded cost, it follows that every SRPT schedule is optimal, thus establishing the correctness
of the algorithm for this case.

Recursive case. Suppose we have an instance with k& groups. Without loss of generality, we may
assume that the k groups are numbered 0 through £ — 1. By Lemmas 3.4, 3.5, and 3.6, we know
that there exists an SRPT-friendly natural list schedule that has optimal rounded cost. The overall
structure of the recursion step is as follows. (We present the formal details below.)

1. Division: Divide the given constrained instance into a sequence of constrained instances
{I;}, in each of which there is exactly one job from the largest numbered group.

2. Enumeration: For each instance I;, determine a set C; of O(n'/%) constrained instances
that consist of jobs from groups 0 through k — 2, by enumerating O(n'/%) different schedules
for the lone job in group k& — 1.

3. Recursion: For each 7 and for each constrained instance in C;, we recursively determine
a (1 + 0)k~'-approximate schedule. Each schedule thus obtained determines a candidate
schedule for I;. We select the best schedule among the O(n!/?) candidate schedules as the
schedule for I;. The schedule for the instance I is obtained by merging the schedules obtained
for I;, for all 4.

Before describing the division step, we introduce some notation and a supporting claim. Let J
denote the set of jobs in the largest indexed group k£ — 1, and let £ denote the number of these jobs.
We first determine the order in which these jobs finish in an optimal schedule. This will enable us
to split the given scheduling instance I into ¢ constrained scheduling instances Iy, Is, ..., Iy such
that each instance contains exactly one job from J. In order to determine the order of completion
of the jobs in J we use the fact that the optimal schedule is natural and SrRpT-friendly. The order

13

of completion of jobs in J is the same as that in which the jobs complete assuming that the jobs
in J are scheduled in SRPT order and every job in J has lower priority than any job in groups 0
through & — 2. We refer to such a schedule as a groupwise schedule. Let the completion order of
jobsin J be ji, ja, ..., je. For 1 < i </, let t; denote the completion time of job j; in the groupwise
schedule. For convenience, we set t; = 0.

Lemma 3.9 The order of completion of jobs in J in an optimal schedule is identical to that in a
groupwise schedule.

Proof: Let p}(j) (resp., p?(j)) denote the remaining processing time of job j at time ¢ under
a given optimal schedule (resp., groupwise schedule). We claim that for any job j € J and any
0<i<Y, p,}i () = p%i (7). Before proving this claim, we argue that the statement of the lemma
follows from the claim. To see this, note that (a) job j; completes in the groupwise schedule at
time ¢; and p._ (j;) > 0; (b) j; completes in the optimal schedule at the earliest time ¢ at which
pt(ji) = 0. According to our claim, p,}iil (7i) > 0 while p,}i (7i) = 0; therefore, j; completes at some
time in the interval (¢;_1,¢;]. The statement of the lemma follows.

We now prove the claim in the preceding paragraph. The proof is by induction on i. For the
base case, we set i = 0. At time ty = 0, the remaining processing time of each job in the groupwise
schedule is identical to that in the optimal schedule; so the desired claim holds. We now consider
the induction step 7 > 0. For the induction hypothesis, we assume that pj, (j) = p.(j) for all j € J.
We consider two cases for the induction step. The first case is when there does not exist any time
t in [t;—1,t; — 1] when one schedule processes a job in J while the other processes a job not in J.
In this case, the induction hypothesis directly implies the induction step.

For the second case, we assume that there exists a time in [t;_,¢; — 1] when one schedule
processes a job in J while the other processes a job not in J. Let ¢ be the earliest such time.
The induction hypothesis implies that the total work done on jobs outside J in both schedules is
the same until time ¢. Since the groupwise schedule assigns lower priority to all jobs in J when
compared to any job not in J, it follows that at time ¢ the groupwise schedule processes a job not in
J (i.e., in one of groups 0 through k — 2), while the optimal schedule processes a job j € J. We now
claim that j is the first job in J to complete after time ¢ in both the schedules (and hence, j = 7;).
By the induction hypothesis, the choice of £ and the fact that the jobs in J are processed in SRPT
order by both the schedules (assuming that ties in the SRPT order are broken the same way), the
remaining processing time of j; at time ¢ is the same in both schedules. Since the optimal schedule
is natural, this remaining processing time is less than (1 + €)¥~', in both schedules. This implies
that p;(t) in both the schedules is less than the processing time of any job in .J that is released after
time ¢. Furthermore, the remaining processing time of every job in the set S = {j;11,...,J¢} at
time ¢ is at least (1+¢)*~'; this is because otherwise there exists some other job j,, 7 > 4, that has
remaining processing time less than (1 +¢)¥~1 at time r(j;), implying that j, should have higher
priority than j; in the SRPT order, thus yielding a contradiction. Since the jobs in J are processed
in SRPT order in both schedules, it follows that both the schedules assign lower priority to the jobs
in the set S = {j;11,...,J¢}, when compared with the jobs outside S. Thus, in both schedules,
ji is the job from J that will complete next. Furthermore, in both schedules, no job from the set
{jit1s--.,7¢} will be processed until the first time after ¢ when there is no job outside of S; this
time is the same in both the schedules and equals t;. Therefore, we have pf (jr) = pi. (j;) = 0 for
r < ¢ and p%i (4r) = ,O%i (3:) = pi (§r) = pi(jr), for r > i. This completes the proof of the induction
step, and hence the claim. []

Division. The order of completion of the jobs in J can be used to split the optimal schedule into
¢ parts. The first part begins at time 0 and ends at time #;. We break the given instance I into

14

two constrained instances I1 and I’ as follows. Let the set S; consist of j; and all jobs in groups 0
through k£ — 2 that arrive in the interval [0,%; — 1]. We note that all of these jobs complete both
in the groupwise schedule and in the optimal schedule during the interval [0,¢;]. Furthermore, in
both schedules, jobs in J — {j;} are executed in SRPT order and are given lower priority than every
job in S;. We set instance I; to be the set Sy of jobs and their release times. We set instance I’ to
be the remainder of the jobs with their release times subject to the forbidden times imposed by the
jobs of instance ;. We note that the set of time periods during which the jobs of instance I; are
scheduled are independent of the particular schedule used for I; hence, the constrained instance
I' is well-defined.

By construction, the instances I; and I’ consist of disjoint sets of jobs and time periods for
processing jobs. Given a schedule S; for I; and a schedule S’ for I’, we obtain a schedule S for I by
simply merging the two schedules. That is, a job is scheduled at time ¢ in S if it is scheduled at time
t in exactly one of &; or S8’. The rounded cost of S is the sum of the rounded costs of S; and S'.
Furthermore, the instances I; and I' have been defined such that the given optimal schedule can
be split into two disjoint schedules, one for I; and the other for I’. Therefore, an optimal schedule
for S can be obtained by determining optimal schedules for both I; and I’ and then merging them.
Similarly, for any a > 1, an a-approximate schedule for I and an a-approximate schedule for I’
yields an a-approximate schedule for I.

The division step consists of repeating the above splitting iteratively to obtain a series of
constrained instances I; through I, such that in any instance I;, we have exactly one job from J
(and hence group k — 1). By the argument in the preceding paragraph, an a-approximate schedule
for I can be obtained by merging together a-approximate schedules for each I;, 1 < i < /4. The
enumeration and recursion steps show how to obtain a (1 4 §)*-approximate list schedule for any
constrained instance that contains exactly one job from group k — 1.

Enumeration. Consider constrained instance I;. The job j; is the lone job of group £ — 1 that is
in instance I;. By Lemma 3.2, any natural list schedule for I; can be converted into a list schedule
in which j; does not delay more than 1/§ smaller jobs, while increasing the cost by a factor of at
most 1 4+ §. Since there exists a natural list schedule with optimal rounded cost, it follows that
there exists a list schedule with cost at most 1+ ¢ times the optimal rounded cost, in which j delays
no more than 1/4 smaller jobs.

We now compute a (1 + §)*-approximate schedule for the instance I; by computing a schedule
that is (1 + &) '-approximate among all schedules in which j; delays no more than 1/§ smaller
jobs. We stipulate that j; delays at most 1/§ jobs in groups 0 through k£ — 2. There are thus at
most %(176) = O(nl/‘s) selections for the set of jobs that may be delayed by j;. Each such selection
identifies a set X of size at most 1/d. Every list schedule for I;, which assigns a priority to j; higher
than any job in X and lower than any other job, processes j; at exactly the same time periods.
Thus, the set X completely determines the time periods at which 7; is processed in any schedule
for I; that obeys the constraint that j; may not delay any job outside X. For each selection of
X, we determine the times at which j; is processed. We then calculate two constrained instances
containing jobs from groups 0 through k& — 2 only. The first instance includes jobs that do not get
delayed by j; and complete before the completion of that job. The second instance consists of the
jobs that get delayed and the jobs that arrive after the completion of j;. All of the time steps prior
to this completion can be marked as forbidden for the second instance.

For a given «, if we obtain a-approximate schedules for each of the two constrained instances
defined above, then we can merge the two schedules to obtain a schedule for I; that is a-approximate
among all schedules in which j; does not delay any job outside of X. This completes the enumeration
step.

15

Recursion. By the induction hypothesis we know that for any constrained instance with n jobs and
at most s < k groups, our algorithm enumerates O(n*/°+#) schedules and determines a (1 + 0)*-
approximate schedule. Thus, (1 + §)* !-approximate schedules for all of the O(n'/?) instances
obtained in the enumeration step, for all I;, can be computed by enumerating nk=1)/0+k=1 gchedules
and selecting the one with smallest cost. Thus, the total number of schedules enumerated following
the recursion is O(n'/%) - £. O(nlk=1D/0+k=1) = O(nk9+k) And the approximation factor is at most

(14 6)*. This completes the induction step and the proof of Lemma 3.3.

4 Rounding of job sizes

In this section, we study the impact of incomplete knowledge of job sizes on stretch and flow metrics.
We first consider a natural variant of SRPT, in which jobs are scheduled according to the rounded
values of their remaining processing times, rather than the remaining processing times. This class
of algorithms, which we refer to as A-SRPT, is analyzed in Section 4.1.

The algorithms studied in Section 4.1 rely on partial knowledge of the remaining processing
time of each job at each step. A more realistic model for studying incomplete knowledge of job
sizes is a relaxation of the non-clairvoyant model in which the total processing time of any job is
known to within a constant factor only at the time of the release of the job. Section 4.2 analyzes
A-SPT, a variant of sSPT, under this model.

4.1 Analysis of A\-SRPT

Recall that in each step, SRPT schedules a job that has the least remaining processing time. In
each step of A\-sRPT, we schedule a job whose remaining processing time is within a (1 +) factor
of that of the job with the least remaining processing time. More formally, at any step, the jobs
are divided into groups as follows: a job j is in group i at time ¢ if p;(j) € [(1 + \)%, (1 + A)*F1).
(Recall that p;(j) is the remaining processing time of j at time ¢.) At any step £, A-SRPT schedules
a job from the smallest numbered group that is nonempty. (Note that A-SRPT, with A — 0, is the
same as SRPT.)

The two main results in this section concern the performance of A-SRPT with respect to the
average flow and average stretch metrics. We first show that A-SRPT is O(1)-competitive with
respect to average stretch, for constant A > 0. With respect to average flow, however, we show
that an adversarial mechanism of breaking ties among jobs in the same group leads to an Q(log A)-
competitive ratio. (Recall that A is the ratio of the maximum processing time to the minimum
processing time among all jobs in the given instance.) This is a surprising departure from the true
optimality of SRPT for average flow. We finally present a specific tie-breaking mechanism and show
that the resulting refinement of A-SRPT achieves an O(1) competitive ratio for average flow, and
thus is simultaneously competitive for the average flow and stretch metrics.

Our analysis of A-SRPT proceeds by comparing the state of the queue in A-SRPT with the state
of the queue in any other schedule, say S. Let Sy(i) (resp., S;()) denote the set of jobs in group i
at time ¢ in the A\-SRPT schedule (resp., S). Let Ny(i) (resp., N/(i)) denote the number of jobs in
Si(7) (resp., Si(i)). For a given set of jobs, we refer to the sum of the remaining processing times
of the jobs in the set at time ¢ as the volume of the set at time ¢. Let V;(i) (resp., V/(i)) denote
the volume of jobs in S;(i) (resp., S;(i)) at time . We note that the total flow of a schedule is
simply the sum, over all time steps ¢, of the number of jobs in the queue at time ¢. In particular,
the total flow of the A-SRPT schedule equals), > "+, V¢(k). Similar to total flow, the total stretch
of a schedule can be calculated as the sum, over all time steps ¢, of the sum of the reciprocals of
the processing times of the jobs in the queue at time ¢.

16

Before presenting the analysis in detail, we provide a brief overview. We first bound, in
Lemma 4.1, the prefix sum of the group volumes in the A-SRPT schedule in terms of the corre-
sponding prefix sum in §. This enables us to argue that the number of jobs in groups 0 through
1 at any time ¢ in the A-SRPT schedule is not much more than the corresponding number in any
other schedule (Lemma 4.2). More precisely, the prefix sum of the group sizes in A\-SRPT differs
from the corresponding prefix sum for any other schedule by only a constant number per group.
This claim almost directly yields an upper bound on the competitive ratio of A-SRPT with respect
to average flow (see Theorem 3). For the average stretch analysis, we need to do more. By applying
a simple algebraic inequality (Lemma A.1), one can show that a comparison of the prefix sums of
group sizes leads to a similar comparison of the sums of the reciprocals of the remaining processing
times. To establish the final result, we have to overcome two hurdles. First, stretch corresponds
to the reciprocals of the processing times, not remaining processing times. Second, the preceding
argument based on prefix sums does not account for the stretch contributions of a constant number
of jobs per group (which are not included in the prefix sums calculated in Lemma 4.2). These
hurdles are addressed in the final proof in Theorem 2.

Lemma 4.1 For all times t and groups i, we have Y., Vi(k) < >, o; Vi (k) + (1 4+ X)L

Proof: The proof is by induction on ¢. For the induction base, we set £ = 0. Since the volume
of jobs in the queue at time 0 is independent of the particular schedule, the desired claim holds
trivially. We now consider the induction step ¢ > 0. We first note that the arrival of new jobs in
the system contributes exactly the same amount to both sides of the desired inequality. We now
consider the scheduling of the jobs. Algorithm A-SRPT executes one unit from a job residing in the
smallest group. That is, if >, ., Vi(k) > 0, it decreases by 1. Since at most one unit of any job
may be executed in the schedule S, it follows from the induction hypothesis that if Y, . Vi(k) > 0,
then >, Viy1(k) < 30, Vi(k) + (1 + A)iFLIf > k<i Vi(k) = 0 even after the addition of new
jobs in the system, then it is possible that Y, ., Vi41(k) > 0 if a job in group i + 1 at time ¢ gets
executed in time ¢ and lands in group 4. In this event, 3, ., Vip1(k) < (1+X)™!, which is at most
g Vi1 (k) + (1 + X)"*1. This completes the induction step and the proof of the lemma. [|

Lemma 4.2 For all i, there is a subset T;(i) of S¢(i) and corresponding integer M;(i) = |T3(i)| and
volume Wy(i), such that the following inequalities hold.

M(i) < [1+4+X], foralli (2)
D (Ni(k) — My(k) < (1+A) Nj(k) (3)
k<i k<i

21+ A)F! (4)

> Wi(k)

k<i

IN

Furthermore, the job that is processed by A-SRPT at time t is included in the set U;>oTy(i).

Proof: We establish Equations 2 through 4 by induction on i. For convenience, we set T3(—1) =
Si(=1) = 0 and Ny(—1) = My(—1) = N/(—=1) = Wi(—1) = 0. For the induction basis, we consider
1 = —1. The claim holds directly by the preceding settings.

We now establish the induction step. For the induction hypothesis, we assume the two equations
to hold for all indices less than 7. We now consider the equations for a given i > 0. If S;(i) is
empty, then we set T;(7) to be empty, and the three equations for the induction step follow from the
induction hypothesis. Otherwise, we let T3(i) be any subset of S;(i) that satisfies two conditions:

17

(a) Y pe; Wi(k) is at least (1+ X)"TL; (b) if the group i is the least numbered nonempty group and
hence contains the job that will be processed by A-SRPT, then we ensure that T}3(0) contains the
job. Condition (b) guarantees the last claim in the statement of the lemma. If condition (a) is not
satisfied, then we set Tj(i) to be Si(7).

Since each job in Tj(i) has volume at least (1 4+ A)?, Equation 2 holds. Since each job in Tj(3)
has volume less than (1 + A)**!, it follows that Y, ., Wi(k) has volume at most 2(1 + A)**', thus
establishing Equation 4. For Equation 3, we consider two cases. If T;(i) = S;(4), then the equation
follows from Equation 3 of the induction hypothesis. Otherwise, we have >, .. Wy (k) > (1+\)*+!,
and we derive -

D (Ni(k) = My(k) L+ X < (D Vik) | = | D Walk)
k<i k<i k<i
< Z‘/t 1+)\ i+1 Z Wt
k<i k<i
< Y V()
k<i

(For the first step, we note that the volume of the jobs in S;(k) —T;(k), which equals Vi (k) — Wi (k),
is at least Y, o;(Ny(k) — My(k))(1 + A)*. The second step follows from Lemma 4.1.)
We thus have the following equation.

D (Ni(k) — My(k))(1+ NF <> N/(k)(1+ 3! (5)

k<i k<i

We invoke Lemma A.1, with aj, = (Ny(k) — My(k))(14+ M), by = NJ (k) (1+X) ! and a = 1/(1+)
to obtain Equation 3.]

To bound the stretch contributions of the jobs in the sets T;(i), we consider the birth groups of
jobs in the queue, which we define as follows. Let the birth group of a job be the group that the
job resides in at the time of its release. Thus, the birth group of a job j is [log;,\p(j1)]. (Note
that the birth group is identical to the notion of group in Section 3.)

Lemma 4.3 There is at most one job in Up<;Si(k) that has birth group greater than i.

Proof: The proofis by induction on time. For the base case, we note that the claim holds trivially
at the start of the schedule. For the induction step, we consider the queue at the end of a time
step t > 0. Consider the count on the number of jobs in groups 0 through i, for a given 7. The jobs
that are not processed do not change this count. Furthermore, any job that is released at time ¢
but not processed also does not change the count. Finally, the lone job j that is processed in step
t changes the count only if the job moves from group 7 + 1 to group ¢ as a result of the decrease in
remaining processing time. In this case, j is the only job in Uy<;S;41(k). This completes the proof
of the desired claim. [

The following lemma characterizes the number of time steps that a job can be delayed by a job
with a higher birth group.

Lemma 4.4 A job j can be delayed by at most one job with higher birth group, and only at a time
when the group of j is identical to its birth group. Furthermore, the total amount of such delay for
a job with birth group g is at most (1 + \)9+!,

18

Proof: Counsider a job j that is released at time ¢, and arrives into its birth group ¢g. By
Lemma 4.3, there is at most one job (say j') in groups 0 through g at time ¢ that has its birth
group greater than g. Suppose the job j' exists. By the definition of A-SRPT, no job in groups g + 1
and higher will be executed until the completion of 5. So the only job with birth group higher than
g that may delay j is j'. Furthermore, once j moves out of group g, it will never be delayed by j'.
This is because at the instant j moves out, either j' is in group g or j' has already been completed;
in either case, 7 will not be delayed by ;' any more. The remaining processing time of j' at the
time of release of j is at most (1 + A)9"!. Therefore, the total time that j/ may delay j is at most
(14 M)9+L, [

We are now ready to establish a constant-factor upper bound on the competitiveness of A\-SRPT
with respect to average stretch.

Theorem 2 For any constant A > 0, A\-SRPT is O(1)-competitive with respect to average stretch.

Proof: Our analysis places a bound on the contribution to the total stretch by all the jobs in
the queue of A\-SRPT at a given time step ¢ by comparing with the schedule that minimizes the
total stretch contribution at time t. We note that there exists a schedule § such that & minimizes
the total stretch contribution of jobs at time ¢ and there is no partially executed job in § at time
t [17]. This is because given any schedule that minimizes the total stretch contribution of jobs
at time ¢ and does not satisfy the property of having no partially executed jobs at time ¢ can be
converted into a schedule that satisfies the desired property by simply not processing jobs that
remain incomplete at time ¢. Since the total stretch contribution at time ¢ is a function of only the
processing times of the jobs in the queue at time ¢ and not the remaining processing times of the
jobs in the queue at time ¢, the claim holds. In the remainder of the proof, we refer to this schedule
as S.

We first invoke Lemma 4.2 to obtain the subsets 7;(7) and associated parameters M;(i) and
Wy(i). Consider the contribution to the total stretch by jobs in S;(i) — T;(i), for all 4. This
contribution is at most Y5 (Ny(4) — My(i))/(1 + A) since any job in S;(i) — T;(i) has processing
time at least (1 + \)’. We obtain that the total stretch contribution at time ¢ in schedule S is at
least S50 N/ (i) /(1 + A)*F1. It thus follows from Equation 3 and Lemma A.1 that the total stretch
due to jobs in Sy(i) — T} (i), taken over all i and ¢, is at most (1 + A)? times the optimal stretch.

It remains to analyze the stretch contribution due to the jobs in T;(i), for all i. Let Y denote
the set of all of these jobs. If Y is empty, then there is nothing to prove. If |Y| = 1, then by
Lemma 4.2, the sole job in Y is currently executed by A-SRPT. Otherwise, there are at least two
jobs in Y. Let j; denote the job in Y that is being processed by A-SRPT. Thus, j; is in the lowest
numbered nonempty group. Rank the remaining jobs in Y in nondecreasing order of their group
number (breaking ties arbitrarily) and let jo be the first job in this list. Let ¢g; and g, denote the
current group of j; and jo, respectively; thus g1 < go. Let g] and g} denote the birth groups of j;
and jo, respectively. We consider two cases.

e Case 1: ¢} < ¢g). In this case, we have go > ¢}. To see this we note that if go» < g}, then
we have two jobs j; and j; in the set Up<,,Si(k) that have larger birth groups than go, a
contradiction to Lemma 4.3. It follows that the contribution to total stretch of all jobs in Y

19

at time ¢ is at most

IN

+ZPt] ZZ

JEY . J#hN k>g} jETH()

Gt s T ihim

k>g| jET: k)

B 1 Wy (k)
G +,§;1 T+ 07 o

p(J1) t(7)

IA

(For the second step, we note that for j € T;(k), pi(j) > (1 + A)F.)

e Case 2: g > ¢). In this case, we have a job j, being delayed by a job with a higher birth
group. By Lemma 4.4, g9 is the same as g5. Thus every job other than j; is in a group that
is at least go. It follows that the contribution to total stretch of all jobs in Y at time ¢ is at
most

L.+zp+t)s P

J1 =
p() jeYi#i k>g4 jeTi(k

IN

(1)\
k>g)]ETt(k) +

1+>\2k
k>g),

(For the second step, we note that for j € Ty(k), pi(4) > (1 4+ A)*.)

We now show that >, T)(\)Z)k for any g is at most 2(2 + A)/(1 + A)¢. By Equation 4, we know

that >, .. Wi(k) < 2(1 4+ A)**'. The term > k>g % is maximal when

Wilg) =2(1+ X,

and for i > g,

Wi(i) =2(L+ M) = > Wik (1+ M)
g<k<i

For a formal proof of the underlying claim, which relies on elementary algebraic manipulations, we
refer the reader to [16, Lemma 4.2]. We thus obtain the following inequality:

Z(Wt(k) - 2(1+>\)9+1+22>\(1+>\)’“

L+)2 = (14 X% (14 X)2k

k>g k>g

2 2\
BT R e

< 2 2
R S\ I TR \Y
ECESY
(LN

20

We now substitute the above inequality in Equations 6 and 7 with g = ¢] and ¢g = ¢}, respectively.
Since p(j1) < (14 A)%+! and p(ja) < (1 + A)%F!, we obtain that the total stretch contribution of
jobs in Y at time ¢ is at most the sum of two terms: (a) the reciprocal of the processing time of
the job that is being processed; (b) 2(2 + A\)(1 + A) times the reciprocal of the processing time of a
job that is either being processed or is being delayed by a job with higher birth group. The total
stretch contribution, over time, of the job currently being executed is at most n. By Lemma 4.4,
the total stretch contribution of the jobs that are delayed by a job with higher birth group is at
most (1 + A)n. It follows that the contribution of the jobs in Y is at most n + 2n(1 + A)?(2 + A).
Let the optimal total stretch be S*. The total stretch achieved by A-SRPT is at most ((1 +
N28* +2n(1 4+ A)2%(2 + A\) + n. Since S* > n, we obtain an O(1) competitive ratio for constant
A> 0. |
We now show that A-SRPT is ©(log A)-competitive with respect to average flow time.

Theorem 3 Let A be the ratio of the maximum processing time to the minimum processing time.
Algorithm X-SRPT is O(Xlog\ A)-competitive with respect to average flow. Furthermore, for
A <1, there exists an instance for which the average flow of A-SRPT is Q(A(log;,, A)/(1+1In(1/X)))
times optimal.

Proof: We consider the upper bound first. By Equations 2 and 3, we obtain the following
inequality for all 7 and ¢:

S ONy(k) < (L+ X)) N/(k) + [A+ 173 +1). (8)

k<i k<i

Since the maximum number of groups is [log;, \ AJ, setting ¢ = [log;,, A] in Equation 8 yields
that >, ., Ny(k) is at most (14+X) >, ., N{(k) plus O(Alog; ., A). Since A-SRPT is work-conserving,
it follows that if there is at least one job in the queue of A-SRPT at time ¢, then there is at least
one job in the queue of any other scheduling algorithm at time ¢. We therefore have), . Ny(k) is
O(Xlogy 5 A ,; Ni(k)) yielding the desired upper bound. -

We now consider a lower bound for A-SRPT. Let ¢; (resp., h;) denote the lowest (resp., highest)
possible size of a job in group i. We refer to ¢; and h; as the lower and upper bound, respectively,
for group 4. (Note that £; = [(1 + A\)*] and h; = ;41 — 1.) Fix nonnegative integer ig. Consider
an instance in which two jobs, one of size h;,, and another of size ¢;,, arrive at time 0. Let 4; be
chosen such that h;, is the largest upper bound that is at most h;, — ¢;,. At time h;, — h;,, we
introduce a job of size ¢;,. In general, at time h;, — h;,, 1 < s < k, where k is specified later, we
introduce a job of size ¢;,, where ¢y is the largest numbered group whose upper bound h;, is at
most h;, , — ¥¢;, ,. Finally, at each of the time steps h;,, h;, +1,...,h;; + m — 1, for an integer m
that is specified later, we introduce a unit size job.

We now consider the schedule computed by A-SRPT for the above instance. Since A\-SRPT does
not differentiate among jobs in the same group, it may start the job of size h;, ahead of the job of
size {;, at time 0. Thus, at time h;, — h;,, exactly h;, units of the job are remaining. At this time,
a new job of size ¢;, arrives. Again A-SRPT may give preference to the larger job and continue the
execution of the job with remaining processing time h;,. At time h;, — h;,, exactly h;, time units
are left, at which time a new job of size ¢;, is introduced in the system. As the schedule continues,
we note that there is a possible execution of \-SRPT such that at time h;,, the initial job of size h;,
is completed; however, jobs of sizes ¢;,,¢;,, ..., are present and have not been processed at all. At
this time, since a sequence of m unit size jobs arrive, we obtain that the total flow of the schedule
obtained is at least h;, + >, 4i, + mk.

On the other hand, we can construct a schedule in which there are at most two jobs in the queue
at any time. In particular, suppose we execute the jobs of size ¢;,, ¢;,, ..., ¢;, ,, in order, ahead of

21

the job of size h;,. We find that our construction ensures that all the jobs of size 4;,, ..., ¢;, , have
been completed prior to the arrival of the job of size ¢;,. More significantly, when the m jobs of unit
size are being executed, only the largest job (of size h;,) is waiting in the system. The total flow
for the schedule thus obtained is at most hi, + 2(>g<,p 4i, +m). We now set ig, k, and m such
that £;, | =1, and m = Q(h;, + > o<,y fi,). We then obtain that the competitive ratio of A-SRPT
is Q(k). If A is the ratio of the largest and smallest processing times, then iy > (log; , A) — 1. In
general, we have iy, > i,_1 —log;, ,(1/A) — 1. Thus, we obtain

log;,, A Alogy \ A) ()\logH)\A)
T 141logi 2 (1/X) T 2In(1 + A)(1 4+ log; 1 (1/X)) ~ 1+ 1n(1/X) /)"

(In the third step, we use the inequality eM? <1+ X for A < 1. For the fourth step, we note that
since A <1, 2In(1 + X) <2 = 0O(1).) This completes the proof of the lower bound. []

A refinement of A-SRPT. We now show that a refinement of A-SRPT achieves a constant factor
competitive ratio for average flow as well; our analysis assumes that A is a positive integer. As
A-SRPT is presently defined, the algorithm does not differentiate among jobs in the same group.
Since there is uncertainty in the remaining processing times, certainly we cannot use the remaining
processing times. Nevertheless, we do know the processing times of the jobs up to a (1 + \) factor;
we make use of this information in our tie-breaking mechanism. Let S;(i) denote the set of jobs in
St(i) that have birth group i.

Consider a refinement of A-SRPT which executes at each step a highest-priority job from the
smallest numbered group that is nonempty, where the priority within a group is assigned as follows:
the jobs in S;(i) have higher priority than those in S;(i) — S;(i); within S;(), a partially executed
job is given the highest priority. We now analyze the refined A-SRPT algorithm. We begin by
noting that by the definition of the algorithm there is at most one job in S;(i) — S;(i). We define
a quantity w;(i), which measures the amount of work performed on the (lone) job in S;(i) — S;(i)
while it is in group i, if such a job exists. More precisely, if S;(i) — S;(i) = {j}, we set w;(i) to be
(1+ X))t —1— p,(t); otherwise, we set w;(i) to be A(1 + A)°.

Our analysis for refined A-SRPT follows the same approach outlined earlier for A-SRPT. The
following lemma is a variant of Lemma 4.1.

Lemma 4.5 For all times t and groups i, we have wy(i) + Y pc; Vi(k) < Y pe; V/ (k) + (1 4+ X)HL

Proof: The proof is by induction on ¢. The induction basis is trivial since w;(i) < (1 +A)*T! and
Vi(k) = V/ (k) for all k. Consider step ¢t. We first note that the arrival of new jobs in the system
contribute exactly the same amount to both the sides of the desired inequality. We now consider
the scheduling of the jobs. The algorithm executes one unit from a job residing in the smallest
nonempty group. Let S;(¢) be the smallest nonempty group. We consider three cases. For i > /,
the volume of the jobs in Uy<;S;(k) decreases by 1, and w;(7) does not change. Thus, the left hand
side (LHS) of the desired inequality decreases by 1. Moreover, the right hand side (RHS) decreases
by at most 1. Therefore, the induction step holds in this case.

For i = ¢, if S;(i) is nonempty, then a job in S;(i) is executed; therefore, V;(i) decreases by 1
and wy (i) does not change, thus yielding the induction step since the LHS of the desired inequality
decreases by 1, while the RHS can at most decrease by 1. If S;(i) is empty, then w; (i) + Vi41(4)
exactly equals (1 4+ A)"T! — 1, thus establishing the inequality.

We finally consider the case 1 < £. If i < £ — 1, then the inequality trivially holds since the
volume of jobs in groups 0 through ¢ is 0 at time ¢+ 1. If s = £ —1, we only need to consider the case
when a job moves from group £ to £—1 at the end of step ¢. In this case, we have wy;1(¢—1) = 0 and

22

Vi(¢ — 1) < (1 + \)*, thus again establishing the desired inequality. This completes the induction
step and the proof of the lemma. |

Corollary 4.5.1 For all times t and groups i, we have

SN+ < [YONE) AN+ (14N (9)
k<i k<i

Proof: If there is no job in the queue of S at time ¢, then the same holds true for refined
A-SRPT since the latter is a work-conserving schedule, and the desired claim trivially holds. In the
remainder we assume that there is at least one job in the queue of S at time ¢. Fix ¢ and {. We
consider two cases. If S;(i) — Sy(i) is empty, then wy(i) equals A(1 + A)?, and Equation 9 follows
from Lemma 4.5 by noting that each job in S;(i) (resp., S}(i)) has volume at least (1 + \)* and
less than (1 + A)**'. We now consider the case when S;(i) — S;(i) is nonempty and equals the
singleton set {p}. In this case, we note that the sum of w;(i) and the volume of S;(i) — S;(i) equals
(1 4+ A)*t — 1. Thus, we have:

DONE)L 4N = N()(L+ N+) Ni(k)(L+ A
k<i k<i
= (T4 N+ (Vi) — D+ N+) No(k)(1+ M)
k<i

IN

L+ N+ [D Vilk

k<i

k<i

< (N + DoV (k)

k<i

)Pt
= (1+XN)'+ ZVt)—i—wt (1+X)F+1

< @AM+ [DONE(+ N 1)]+
k<i
< (4N + DN (E)(1 4 1)
k<i

(In the third step, we use the fact that every job in Sy(k) has remaining processing time at least
(1+ A)*. In the fourth step, we use the equality w;(i) = (1+)"+ — 1 — py(k). In the fifth step, we
use Lemma 4.5. In the sixth step, we use the fact that every job in S;(k) has remaining processing
time at most (1 + A)*. Finally, in the last step, we invoke the condition that there is at least one
jobin S.) [|

We now show that refined A-SRPT is O(1)-competitive with respect to average flow. For all
times ¢ and groups i, we establish

S ON(E) < (L+A)D] Ni(k) +[1/A]. (10)
k<i k<i

The proof is by induction on 7. The base case follows from Equation 9. For the induction hypothesis,
assume that Equation 10 holds for all indices less than £, £ > 0. We now establish the claim for

23

index £. The proof is similar to the calculation in Lemma A.1. For 0 < i < ¢, we multiply both
sides of Equation 10 by A(1 + A)?, add the equations together to obtain

3 ((1 P - (14 A)’“) N(k) < Y ((1 FH (1 A)’““) NI(k) + T1/A1(1 + V) (11)

k<t k<t

Adding together Equation 9, with index £ substituted for 7, and Equation 11, we obtain

T+XND N(k) < @+ NTDON/K) + 1+ N ([1/A] +1). (12)
k<t k<t

Dividing both sides of Equation 12 by (1 + A)* and noting that the LHS is an integer yields the
desired inequality for the induction step. The O(1) bound on the competitive ratio of A-SRPT
directly follows from Equation 10.

4.2 Analysis of A\-spT

We now consider a different model for uncertainty in job sizes. In this model, when a job j arrives
the processing time p(j) of the job is not known. Instead, what is known is the number 4 such that
(1+ X <p(j) < (14 A as in Section 4.1, we refer to i as the birth group of job j. In this
section, we show that the following simple algorithm, A\-spPT, achieves an O(1) competitive ratio
with respect to average stretch: In each step, A-SPT executes one unit of work on a job that has
the smallest numbered birth group; ties are broken in favor of partially executed jobs.

The analysis of A-SPT is similar to that of A-SRPT. Let S;(i) (resp., S;(i)) denote the set of jobs
in the queue at time ¢ that have birth group i. Let Ny(i) (resp., N/(i)) denote the number of jobs
with birth group i at time ¢ in the A-spT schedule (resp., §). Let Vi(7) (resp., V}/(i)) denote the
total volume of jobs with birth group i at time ¢ in the A-sPT schedule (resp., §). The following
lemma shows that the prefix sum of birth group volumes in A-SPT is at most that in any other
schedule at any time.

Lemma 4.6 For all times t and groups i, we have Y, ., Vi(k) < >, ., V/ (k).

Proof: The proof follows from an easy induction on time ¢. The induction base, for t = 0, is
trivial. At any time ¢, the arrival of new jobs increases both the LHS and the RHS of the desired
inequality by the same amounts. Since A-SPT executes a job that has the smallest birth group and
the birth group of a job never changes, the induction step follows from the induction hypothesis. B

Since we give preference to partially executed jobs within a birth group and the birth group of a
job never changes, it follows that in each birth group 4, there is at most one partially executed job.
Let S;(i) denote the subset of jobs in S;(i) that have not yet been executed; hence their remaining
processing times equal their processing times. (Thus, |S;(i)| > Ny(i) — 1.) Let N;(i) denote the
number of jobs in S;(i). The following claim, which bounds the stretch contribution of the jobs in
>, Si(k), follows from Lemma 4.6 and Lemma A.1.

Lemma 4.7 For all times and groups i, we have

Ny (k NI (k
Z (1 +()\))k < Z (1 + ;)I)cl (13)

k<i k<i

24

Proof: The set St(k) consists of jobs with birth group k£ that have been released but not processed
at all until time ¢. Thus, the remaining processing time of each of these jobs is at least (1 4+ A)¥.
Therefore, we obtain

SN +NE < S Vi)
k<i k<i
< V/(k)
< YN[k + A
k<i

(The first step holds since Ny (k) < |S;(k)| and each job in S;(k) has processing time at least (1+)*.
The second step follows from Lemma 4.6. The last step holds since N/(k) < |S}(k)| and each job
in S)(k) has processing time at most (1 + \)¥*1.)

We now invoke Lemma A.1 with aj, = Ny(k)(1+M)F, by = N/(E)(1+ N and a = 1/(1 4+ \)?
to obtain the desired claim. |

We now analyze the stretch contribution of the jobs in A-SPT’s queue at time ¢. Our comparison
is with a schedule § that minimizes the total stretch contribution of all jobs in the queue of S at
time t. As we have argued earlier (in the analysis of A\-SRPT), we can assume without loss of
generality that none of the jobs in the queue of § at time ¢ have been processed since their release.
It follows from Lemma 4.7 that the stretch contribution of jobs in Ukz[]gt(k) is at most (1 +)2
times the stretch contribution of the jobs in S at time ¢. (In the preceding argument, we have used
the facts that the size of each job in S;(i) is at least (1 4+ A)* while the size of each job in Si(i) is
at most (14 A)"".) Thus, added over time, the stretch contribution of the jobs in Uy>0S;(k), is at
most (1 + \)2S*.

We now consider the stretch contribution of the partially executed jobs in A-SPT at time ¢. We
note that this contribution is at most (1 + X)/\ times that of the partially executed job in the
smallest numbered nonempty group; this job is the one that is executed at time ¢. Since the stretch
contribution of the job that is being processed, when added over all times, is at most n, it follows
that the total contribution of partially executed jobs is at most (1 + 1/A)n. We thus obtain that
the total stretch of A-SPT is at most (1 + A)?S* + (1 + 1/A)n, which is O(S*) for constant A > 0,
since S* > n. For A = 1, the total stretch is at most 4S* + 2n, and thus has a competitive ratio
of at most 6. The minimum bound on the competitive ratio is achieved when A\ = 0.565; for this
value of A, the competitive ratio is at most 5.22.

While A-sPT is near-optimal with respect to average stretch, its competitive ratio with respect
to average flow is Q(log A), as exemplified by the following instance. For concreteness, we fix A = 1,
and ¢ to be power of 2. Consider a sequence of £ — log? + 1 jobs of size 2, log¢ < k < ¢, that
arrive as follows: the job of size 2 arrives at time (3, _,,2') — (¢ — k). Finally, £ — 1 time units
after the arrival of the job of size £, a sequence of a large number, M, of unit-size jobs arrive one
after another at consecutive time steps. From the definition of 1-spT, it follows that when the job
of size 2F arrives, the algorithm will preempt the job that is currently being executed and begin
processing the job of size 2¥. When the sequence of unit-size jobs start arriving, the queue of 1-spT
consists of ¢ — log# 4 1 unfinished jobs, each having one unit of remaining processing time left.
Each of the £ —log ¢+ 1 jobs is made to wait until the entire sequence of unit-size jobs is completed.
Consequently, the average flow achieved by 1-SPT is Q(£/M + 2¢). On the other hand, suppose we
schedule the jobs in the following priority order: the first £ — log ¢ jobs in order of their release
times, then the M unit-sized jobs in order of their release times, and finally the job of size £. The
total flow of the preceding schedule is O(M +2). By setting M > 2¢ and noting that £ = O(log A),
we establish the claimed lower bound on the competitive ratio of 1-SPT.

25

The primary reason for the failure of A-sPT to perform well with respect to average flow is that
a job with a large processing time and very small remaining processing time may be given lower
priority than a job with shorter processing time that has just been released. Since the information
about processing times is only accurate up to a factor of 14+ A, the algorithm does not have a good
estimate on the remaining processing time of the jobs being partially executed. In fact, the range
for the estimate could be a constant fraction of the processing time. To see this, we consider A = 1;
when 2 — 1 units of a job with birth group i is executed, the remaining processing time could be
anywhere in the range [1,2'].

In recent work [13], an interesting refinement of A-SPT has been shown to achieve an O(1)
competitive ratio with respect to average flow. In this refinement, the algorithm tends to schedule
jobs in the smallest nonempty birth group, yet maintains the constraint that the number of partially
scheduled jobs is within a constant fraction of the total number of jobs in the queue.

References

[1] F. Afrati, E. Bampis, C. Chekuri, D. Karger, C. Kenyon, I. Milis, M. Queyranne, M. Skutella,
C. Stein, and M. Sviridenko. Approximation schemes for scheduling to minimize average
completion time with release dates. In Proceedings of the 40th Annual IEEE Symposium on
Foundations of Computer Science, pages 32-43, October 1999.

[2] K. R. Baker. Introduction to Sequencing and Scheduling. Wiley, New York, 1974.

[3] H. Bast. Dynamic scheduling with incomplete information. In Proceedings of the 10th Annual
ACM Symposium on Parallel Algorithms and Architectures, pages 182 191, 1998.

[4] H. Bast. On scheduling parallel tasks at twilight. Theory of Computing Systems, 33:489-563,
2000.

[5] M. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and stretch metrics for scheduling
continuous job streams. In Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 270 279, January 1998.

[6] M. Bender, S. Muthukrishnan, and R. Rajaraman. Improved algorithms for stretch scheduling.
In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 762
771, January 2002.

[7] C. Chekuri and S. Khanna. Approximation schemes for preemptive weighted flow time. In
Proceedings of the 34th Annual ACM Symposium on Theory of Computing, pages 297 305,
2002.

[8] C. Chekuri, S. Khanna, and A. Zhu. Algorithms for minimizing weighted flow time. In
Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, pages 84-93, 2001.

[9] A. Goel, M. Henzinger, S. Plotkin, and E. Tardos. Scheduling data transfers in a network and
the set scheduling problem. In Proceedings of the 31st Annual ACM Symposium on Theory of
Computing, pages 189 197, Atlanta, Georgia, May 1999.

[10] M. Harchol-Balter, M. Crovella, and C. Murta. Task assignment in a distributed server.
Journal of Parallel and Distributed Computing, 59:204-228, 1999.

26

[11] B. Kalyanasundaram and K. Pruhs. Minimizing flow time nonclairvoyantly. In Proceedings of
the 38th IEEE Symposium on Foundations of Computer Science, pages 345 352, 1997.

[12] B. Kalyanasundaram, K. Pruhs, and M. Velauthapillai. Scheduling broadcasts in wireless
networks. In Proceedings of the Annual European Symposium on Algorithms, pages 290-301,
2000.

[13] T. Leighton, January 2003. Personal communication.

[14] S. Leonardi and D. Raz. Approximating total flow time on parallel machines. In Proceedings
of the 29th Annual ACM Symposium on Theory of Computing, pages 110 119, May 1997.

[15] R. Motwani, S. Phillips, and E. Torng. Nonclairvoyant scheduling. Theoretical Computer
Science, 130:17-47, 1994.

[16] S. Muthukrishnan and R. Rajaraman. An adversarial model for distributed dynamic load
balancing. Journal of Interconnection Networks, 3:35 47, 2002.

[17] S. Muthukrishnan, R. Rajaraman, A. Shaheen, and J. Gehrke. Scheduling to minimize average
stretch. In Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer
Science, pages 433 442, October 1999.

A An algebraic inequality

Lemma A.1 Leta;,b;, 0 <1 <n, denote two sequences of reals that satisfy the following inequality

for 0 <i < n.

0<k<i 0<k<i
Then, for any positive real o < 1, we have, for 0 <i < n,
Z apa® < Z bk (15)
0<k<i 0<k<i

Proof: The proof is by induction on 7. For the base case, we let 4+ = (. For this case, Equation 15
follows from Equation 14. For the induction step, we consider index £ > (0. We now invoke the
induction hypothesis, multiply Equation 15 by (1 — a)a~, for each i < ¢, and add the resulting
inequalities together to obtain

Z (1-a)a" Z apot < Z (1—a)a " Z bk,
0<i</t 0<k<i 0<i<t 0<k<i
Rearranging the order of the summation on both sides of the inequality, we obtain
Z (1 — a)apa® Z at < Z (1 — a)bpa® Z a
0<k<t k<i<l 0<k<t k<i<l
leading to
Y a1 < > h(af 1) (16)
k<t k<t

Adding Equation 14, with i replaced by £, and Equation 16 and multiplying by o yields the desired
inequality for the induction step. |

27

