
Fair Share on High Performance Computing Systems:
What Does Fair Really Mean?

Stephen D. Kleban Scott H. Clearwater
Sandia National Laboratories

Albuquerque, NM 87545
sdkleba@sandia.gov

P.O. Box 620513
Woodside, CA 94062

clearway@ix.netcom.com

Abstract
We report on a performance evaluation of a Fair Share
system at the ASCI Blue Mountain supercomputer cluster.
We study the impacts of share allocation under Fair Share
on wait times and expansion factor. We also measure the
Service Ratio, a typical figure of merit for Fair Share
systems, with respect to a number of job parameters. We
conclude that Fair Share does little to alter important
performance metrics such as expansion factor. This leads
to the question of what Fair Share means on cluster
machines. The essential difference between Fair Share on
a uni-processor and a cluster is that the workload on a
cluster is not fungible in space or time. We find that cluster
machines must be highly utilized and support
checkpointing in order for Fair Share to function more
closely to the spirit in which it was originally developed.

1. Introduction

The Advanced Simulation and Computing Initiative
(ASCI) supercomputers were developed for running high-
fidelity, full physics, predictive codes for structural,
electrical, and thermal simulations. In order to satisfy the
needs of this program it is necessary for the jobs running
on these machines to be processed in a timely manner in
order to meet project milestones. The task of the ASCI
facility manager is made all the more difficult by the fact
that the distribution of usage is highly skewed to a few
users running a number of very large jobs[1].

Fair Share is a widely used queueing algorithm for
prioritorizing jobs on the basis of a “share” of the machine
and past and current usage. Using log data we performed a
number of analyses involving correlations among jobs
sizes, expansion factors, service ratios, waiting times, and
number of CPUs.

The key contribution of this paper is that we show that
Fair Share is not playing a large role in prioritorizing jobs.
In particular, in terms of the quality of service metric
expansion factor, we found that the expansion factor is not
strongly influenced by the administrative value of shares in
the sense that over-subscribers can have systematically low
expansion factors over an extended period of time. This

lack of a systematic effect of Fair Share on this system
leads us to question what fair really means. We find that
because jobs on a cluster are not flexible in terms of space
(number of processors) and time (not checkpointable),
Fair Share is not able to achieve real-time fairness as it
can on a uni-processor. Rather, uni-processor-like fairness
on a cluster is achievable only with long time horizons.

2. Environment

In this section we describe the particular environment
we used in this study, including the machine, the queuing
algorithm, the data, and simulator.

2.1 Supercomputer

The machine used in this study is Blue Mountain
located at Los Alamos National Laboratory (LANL). Blue
Mountain has 6144 250-MHz CPUs in 48 shared memory
multi-processor “boxes” of 128 CPUs (126 usable by
jobs) each and covering 10,000 square feet of floor space.
The machine was commissioned in 1998 and has a peak
capacity of Rpeak = 3TF/s and according to
www.top500.org ranks 15th in the world as of June 2002
in terms of Rmax.

2.2 Queue Algorithm

Blue Mountain relies on the Load Sharing Facility
(LSF) for queue management[2]. Fair Share has also been
applied to massively parallel supercomputers, specifically
at LANL running LSF and at Lawrence Livermore
National Laboratory (LLNL) running Distributed
Production Control System (DPCS)[3].

Fair Share for job scheduling was originally designed
for managed resource allocation of processes on a time-
sharing uni-processor system[4]. One problem these
priority-based schemes have is that their parameters are
determined ad hoc. For example, the employment of time-
decayed penalties in adjusting the priority involves the
assumption of the time scale over which “fairness” is to
be obtained. Additionally, Fair Share “assumes a fixed

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

workload consisting of long-running compute-bound
processes to ensure steady-state fairness”[5]—a situation
rarely encountered with ASCI supercomputer clusters.

Fair Share, as implemented on Blue Mountain, assigns
each job a priority based on the submitter’s group priority
as well as the current and recent past usage by that group.
Priorities are periodically updated and the queue resorted
based on the latest usage. Fair Share also utilizes a backfill
mechanism whereby jobs that are not the highest priority
can run if there are sufficient processors and their running
time (based on the user’s estimate) will not delay the
running the current highest priority job.

There are significant differences between processes on
a uni-processor time-sharing system and jobs on a
supercomputer as shown in Table 1, unlike the claims
made in Kay and Lauder[4]. For example, processes can be
freely given more or less of the processor, but a job on a
supercomputer is not fungible into an arbitrary number of
processors—it must run a specific number of processors.
Also, jobs on ASCI machines are not system
checkpointable and so cannot be arbitrarily swapped in and
out to satisfy Fair Share allocations. The key difference of
how Fair Share runs on ASCI machines is that it does not
cap usage as is done on a single processor with processes.
In other words, on the processor, or time-sharing version of
Fair Share there is a hard cap on what fraction of the
machine a process can have. On Fair Share for clusters
such as ASCI, no such hard cap exists. As we will show,
there is only a degradation of subsequent job priority that
does not in practice significantly impact individual or
overall group level performance over time.

Table 1. Fair Share on
Uni-processors and Supercomputers

Uni-
processor

ASCI
machines

Unit of resource being
shared

process job

Prioritorized once running? yes no

Fungible amount of
processors?

yes no

System Checkpointable? yes no

Can get more of the
machine than your share
when machine is highly

loaded?

no yes

Further, the analysis in Kay and Lauder says “a non-
Poisson distribution probably indicates problems, such as a
class of users (not necessarily in the same group) that are
consuming a disproportionately large amount of the
resources.”[4] As we have previously reported, ASCI
machine usage is dominated by the “problem” of a few
large users and the submittal times and job sizes are fat-
tailed (at the high end) as well[1,6].

2.3 Data

We have the choice of using log data or generating
synthetic data for our analysis. Because Blue Mountain
relies on a hierarchy of users and the fact that a number of
jobs are dependent on one another, it is important to retain
these correlations. Consequently we decided to use log
data. Also, Blue Mountain is divided into two partitions,
one for smaller jobs and one for larger jobs. We focused
our analysis on the large partition which has 4662 CPUs
divided into 37 boxes with 126-CPUs each. Nearly all
jobs are a multiple of 126, the exception being debug
jobs. The logged data were taken over a period of 83 days
and contained 8,171 jobs. Within the large partition there
are several queues. We focused on the “large queue”
(largeq) which is Fair Shared and had 7011 jobs. The
maximum run time on largeq is 12 hours. Errors in the log
due to missing or acausal (e.g., the dispatch occurring
before the submission) were not used and occurred at a
level of a few percent.

2.4 Simulation

In this analysis we use the Big Iron Resource
Management simulator (BIRMinator)[7]. Briefly,
BIRMinator uses synthetic or log data in conjunction with
a queue description, user definitions, and machine
definitions to simulate job submission, dispatch and
completion. The simulation takes into account the queue
parameters, job dependencies, and group share
hierarchies. We created a separate set of job data for each
study we did corresponding to a particular job parameter
being scaled.

3. Analysis

In this section we analyze the log data with respect to
shares, usage, service ratio (actual usage/shares), and
expansion factor (1+wait/run).

3.1 Group Shares

The purpose of group share analysis is to see how, or
if, group shares influence the expansion factor (a “quality
of service” measure) for jobs of the ASCI
supercomputers. Group shares are the scaling factor for
job priorities on the Fair Share system. The shares are
determined by administrators and user group
representatives and may change over time. Essentially,
the shares provide a bias in the prioritization of jobs, i.e.,
groups with more shares have a higher priority, all other
factors being equal.

LSF at Blue Mountain uses group level Fair Share.
Using user/group information we were able to identify

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

which group(s) a user belonged to in the large queue group
hierarchy. It is important to note that the 18 largest users
out of hundreds, accounted for 93% of the “largeq” usage.
The shares used by these users accounted for 54% of the
shares. The 93% usage by only half the share groups is a
telling indicator of how poorly the shares were aligned
with the actual usage during this period. Often the figure of
merit of system administrators is to equate shares with
usage. However, the mismatch we see here is not
surprising given that “proper” share allocation on a less
than fully utilized machine requires omniscience of future
usage which is difficult due to the natural fluctuations in
activity that occur in projects. This makes the task of the
system administrator all the more difficult because their
figure of merit is the “service ratio” which is the actual
usage normalized by the share allocation.

Table 2 shows the relationship between shares and
usage. Note that because of double counting from multiple
group membership this column will add up to be slightly
over 100%. Note that the high share groups do not
correlate well with the high usage groups. The “top-level
parent groups” are the highest level group within a Fair
Share hierarchical “bank” of users.

Table 2. Group Share and Usage
Group Share Usage

g2 .050 .056

g4 .050 .158

g8 .050 .210

g15 .050 .010

g20 .060 .028

g21 .120 .067

g22 .060 .213

g23 .060 .416

g29 .360 .023

g30 .0225 .000

g31 .0675 .010

g39 .050 .018

g68† .250 .723

g69† .300 .477

g70† .450 .033
†top-level parent group

This data, graphically shown in Fig. 1, shows the
relationship between shares and actual usage for the non-
parent groups. If shares were truly aligned with usage then
we would expect the points to lie along a line with positive
slope. However, as we see for the low share groups their
usage is quite variable and there is no correlation.

Fig. 1 Usage versus Shares. (Top-level parents
not included.)

3.2 Wait Times

The wait time is probably the most important
performance characteristic from the user’s perspective.
The wait time is defined to be the dispatch time minus the
submit time for jobs that do not depend on another job. In
cases where jobs are dependent on another job before they
can run, the wait time is defined as the dispatch time
minus the time when the independent job (meaning that
it’s dispatch to the machine is not dependent on another
job finishing as specified by the user) finished. In Fig. 2
we show the relationship between the wait time in
seconds and the job size measured in CPU-sec. Wait
times of zero were set to 1 so the log calculation would
give a finite result. Most of the values of wait are close to
zero, with over half the jobs running within 10 seconds of
when they were submitted. Thus for most of the jobs that
run, the queuing system is not playing much of a role.

Fig. 2. Log10(Wait time(sec)) versus Log10(job
size (CPU-sec)) for all the jobs in the large
partition.

Nevertheless, a substantial number of jobs wait a
very long time. For jobs about 100 CPU-sec long, the wait
time was systematically lower than for larger jobs. For
jobs larger than 1000 CPU-sec, the tail of the wait time
distribution was nearly the same for all job sizes up to
nearly 108 CPU-sec. Thus, the queuing system is not

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

making a distinction between large and small jobs. This
occurs in spite of the fact that job size is an integral part of
the Fair Share calculation as it enters directly into the past
and current usage and thence into priority.

However, the situation is quite different if we look at
wait time versus the number of processors as seen in Fig.
3. Here we see a definite relationship between the wait
time and number of processors with larger jobs waiting
longer. This relationship makes intuitive sense because we
would expect smaller jobs to be able to fit more often in
backfill scenarios. Although there is considerable spread
among the points, a best fit line gives a good visual fit to
the relationship:

wait CPU f= × = ×155 3 101 7 1.44 .44

where wait is in seconds and CPU is the number of
processors used by the job and f is the fraction of
processors used by the job. Thus, doubling the size of the
job increases the wait time by an average of 21.44 = 2.7.

Fig. 3. Wait versus CPU with best fit line.

The power law relationship found above illustrates an
important issue in large scale computing. Namely, these
machines are designed to run enormous jobs, but still there
is a diminishing of returns for larger jobs because the wait
time grows faster than the number of CPUs.

Fig. 4. Wait versus Runtime.

Fig. 4 shows the relationship between wait time and
run time and no correlation is seen. Thus, the relationship
between wait time and CPUs indicates that the finite

number of processing resources is the critical element in
how long a job waits and depends less on how long it will
reside in the machine.

3.3 Expansion Factor

Expansion factor is a measure of quality of service
typically calculated as (runtime + waittime)/runtime, but
for this analysis the expansion factor was calculated for
each group according to the formula:

EFgroup

run wait

run
weight

weight

wait

run
weight

weight
=

+
∑

∑
=

+∑

∑

1

where weight is either jobsize = CPUs× run or number of
CPUs, and wait=dispatch – submit. The weighting factor
of jobsize was used to reduce the effect of small jobs that
waited a long time from overly biasing the results.

Also, note that there are cases where certain jobs are
dependent upon other jobs. This means even if such a
dependent job were submitted at the same time as the job
it depends on, the dependent job will have an
anomalously large wait time. This will be true even if the
dependent job runs immediately after the job it depends
on finishes. Thus we modify the EF for dependent jobs to
be:

EF

dispatch finish

run
weight

weight
group dep

independent

, =
+

−

∑

∑

1

where finishindependent is the finish time of the independent
job.

The data in Table 3 represents the share groups and
the top-level parent groups along with their EFs. In cases
where users did belong to more than one group, the
contribution to the expansion factor calculation were
made equally to each of the groups and is thus a source of
error because we cannot uniquely invert the log to
determine from which group a job was submitted. Unless
otherwise noted, we use the job size weighted expansion
factor in the analyses that follow rather than the CPU
weighted expansion factor.

As can be seen clearly from Table 3, the expansion
factor does not correlate well with the shares. It may seem
that groups with lower shares would have a higher
expansion factor because they should wait longer, but
there appears to be no strong correlation between shares
(Fig. 5). For actual usage (Fig. 6) there does seem to be a
correlation with the exception of two groups that tended
to submit large jobs in bunches.

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

Table 3. Shares and Expansion Factors
Group Share expansion factor

(CPU weighted,
dependency
corrected)

Avg.
Utilization
at Submit

time
g2 .050 1.35 .87

g4 .050 13.53 .88

g8 .050 9.57 .88

g15 .050 2.61 .75

g20 .060 21.6 .90

g21 .120 2.45 .89

g22 .060 14.93 .87

g23 .060 10.68 .87

g29 .360 94.90 .77

g30 .0225 1.35 .94

g31 .0675 2.23 .93

g39 .050 4.00 .89

g68† .250 12.03 .87

g69† .300 9.58 .88

g70† .450 70.9 .85
†top-level parent group

We should also point out that an examination of the
utilizations at submit time were nearly identical for the
groups indicating that there was not a systematic effect
influencing the results. For example, a group was not
waiting for the machine to be relatively free before
submitting thereby obviating the effect of Fair Share.

The relationship between the expansion factor, CPUs,
and run time on a job-by-job basis is shown in Fig. 7. The
discreteness in the CPU axis is due to the fact that users
using the largeq (most of the jobs in the large partition are
from the largeq) must request processors in multiples of
126 CPUs. Intuitively, we might expect a nice surface
rising from the smaller jobs (near the origin) to the larger
jobs (right rear upper corner), but that does not appear to
be the case.

Fig. 5. expansion factor(weighted by job size)
corrected for dependent jobs versus Group
Share.

Fig. 6. expansion factor(weighted by job size)
versus Group Usage.

Looking at just the relationship between expansion
factor and CPU, we see from Fig. 8 that the relationship is
not as clear as it is for wait time versus CPU as in Fig. 3.
Recall that expansion factor is 1+wait/run so that the
runtime must be washing out the effect we found in Fig.
3. Thus large jobs, in terms of CPUs, are neither favored
nor discriminated against in terms of expansion factor.

Fig. 7. Expansion Factor versus CPU versus Run
time.

Fig. 8. Expansion Factor versus CPU.

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

3.4 Service Ratio

Service Ratio is considered by facility managers at
Blue Mountain as an important figure of merit. Basically,
Service Ratio, SR, is the ratio of cycles used by a share
group to the shares actually allocated. The ideal value for
the Service Ratio is 1 which means that each share group is
using exactly the fraction of cycles represented by their
relative shares. The problems associated with such a figure
of merit is the omniscience required. The unavoidable
fluctuations in projects over time make it next to
impossible to achieve an SR=1. The Service Ratio is the
cumulative usage by a group divided by its assigned share
of the machine over the entire time period.

For completeness, Table 4 shows the relationship
between shares and Service Ratios. As expected there is
very little correlation between the two.

Table 4. Shares and Service Ratios
Group Share Service Ratio

g2 .050 1.12

g4 .050 3.16

g8 .050 4.76

g15 .050 0.19

g20 .060 0.47

g21 .120 0.55

g22 .060 3.55

g23 .060 6.93

g29 .360 0.06

g30 .0225 0.00

g31 .0675 0.15

g39 .050 0.36

g68† .250 2.89

g69† .300 1.59

g70† .450 .073
†top-level parent group

Fig. 9 shows the expansion factor versus the Service
Ratio for the lowest level groups (leaf nodes in the group
hierarchy). Again there is no definitive correlation between
expansion factor and Service Ratio. However, there does
seem to be some clustering around small Service Ratios
and small expansion factors, which is precisely the
intention of the Fair Share algorithm—meaning that if you
are below your allocation you should wait less.

Yet, there is by no means a definitive relationship, as
some low Service Ratio groups have a high expansion
factor and some high Service Ratio groups have a low
expansion factor. In cases where one user dominates the
usage in a share group, all the other users in that group feel
the effect through lower priority for their jobs, although
this is not a big effect in practice. This is a consequence of
using Fair Share at the group level rather than at the user
level.

Fig. 9. Expansion Factor(weighted by job size)
versus Service Ratio.

Fig. 10 shows the relationship between Service Ratio
and shares and usage. There is a tendency for larger
Service Ratios to be associated with larger usage, but any
trend is less obvious for shares—the more important
administratively defined parameter. Note that the Service
Ratios are computed at the end of the 84-day run as are
the usages.

Fig. 10. Shares and Usage versus Service Ratio.

Fig. 11 shows a plot of jobsizes versus Service Ratios
versus expansion factors. The plot has three main
features:
1) Main body: {104<JS<107, SR<2, 1<EF<4} Most of the
jobs fall into this category. The jobs in this region show
little correlation between JS, SR, or EF.
2) Large SR appendage: {106<JS<107, SR>2, 1<EF<4}.
These jobs are from heavy users who are far beyond their
Service Ratio target of 1 and yet have lower than average
EFs. These may represent opportunistic users who take
advantage of lower utilization periods such as evenings
and weekends to get their large job work done. Indeed, an
inspection of the log data shows that higher SR jobs tend
to be after normal work hours and during the weekend.
3) Large EF appendage: {104<JS<105, SR<2,
10<EF<1000} These are small to moderate jobs with

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

typical SR values and yet have very long expansion
factors. Examination of the log reveals that these jobs tend
to be week day daytime users who are competing for
resources during high utilization periods.

Fig. 11. Job size(JS) versus Service Ratio (SR)
versus expansion factor (EF).

3.5 Spearman Rank-Order Analysis

In order to see if there is a correlation between the
various job and performance parameters, we performed a
Spearman rank-order correlation test[8]. The advantage of
the Spearman test is that it is non-parametric and depends
only on the relative ordering of two lists. Basically, the
Spearman test compares the relative ordering of two lists to
see how well they line up for the purpose of determining
their correlation. It also turns out that there is a relationship
between the Spearman rank-order statistic and a statistical
confidence level.

Specifically, we tested to see how well the ranks of the
various columns in Tables 2-4 are correlated for the non-
parent groups. Comparing the ranks of Share with Usage
(Table 2), Share with expansion factor (Table 3), and Share
with Service Ratio (Table 4) showed no correlation to a
high level of statistical confidence. Ranks of expansion
factor with Usage and Service Ratio also showed no
correlation. The only significant correlation was between
Usage and Service Ratio. These results are shown in Table
5 which gives the two ranks and the significance of a non-
zero rank. A high value (>>0 and ~1) of significance
means there is not a significant correlation and a low value
(~0) means there is a significant correlation.

The conclusion we draw from this rank analysis is
that relative ranks are not preserved across various
performance metrics with respect to shares. This does not
help the case that shares, usage, and service ratio are

importantly correlated by way of the queuing system as
regards the performance of the machine.

Table 5. Rank Analysis
Rank List 1 Rank List 2 Significance

Shares Usage 0.508

Shares EF 0.422

Shares Service Ratio 0.946

Usage Service Ratio 0.000

4. Discussion

We have analyzed an instance of a Fair Share queue
algorithm on a large cluster. In general we find that Fair
Share is not playing a large role in prioritorizing jobs. We
base this on a number of findings that are discussed
below.

In terms of the quality of service metric expansion
factor, what we conclude from the analysis of the log data
is that the expansion factor is not strongly influenced by
the administrative value of shares in the sense that over-
subscribers can still have systematically low expansion
factors.

We did find a superlinear relationship between the
wait time and the number of CPUs. This effect did not
carry over to the relationship between expansion factor
and number of CPUs.

In terms of the relationship between jobsize, Service
Ratio, and expansion factor (Fig. 11), the largest jobs
were spread out over all Service Ratios and tended to
have a lower expansion factor with higher Service
Ratios(e.g., large evening and weekend jobs). Smaller
jobs tended to have larger expansion factors(e.g.,
weekday day jobs).

We also performed a series of Spearman rank order
tests on the job parameters. Comparing the ranks of Share
with Usage, Share with expansion factor, and Share with
Service Ratio showed no correlation to a high level of
statistical confidence. Ranks of expansion factor with
Usage and Service Ratio also showed no significant
correlation. The only significant correlation was between
Usage and Service Ratio. The conclusion we draw from
this rank analysis is that relative ranks are not preserved
across various performance metrics with respect to shares.

We also found that the difference in the job run order,
as measured by the order that the job was submitted
compared to the order that it was dispatched to the
machine for running, was generally small indicating that
most jobs ran close to the order they were submitted.

In summary, we are now in a position to answer the
question “what does fair really mean” for cluster
computing. The answer to this question is complicated
because fairness seems to be in the mind of the beholder.

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

For example, we should note that Fair Share on this
cluster is not being used in the same way as it was
originally intended for single CPU systems with “cost-
free” process migration. Consequently, “fair” on a uni-
processor necessarily has a different meaning than on a
supercomputer without checkpointing.

Fairness on a uni-processor is achievable in principle
over all time horizons because the processes can be
swapped in and out freely according to the frequency that
the Fair Share algorithm updates. Such is not the case on
clusters because cluster jobs must run on a specific number
of processors and run to completion on those processors
once started. Thus, the implications of this crucial
difference is that the time horizon over which the Service
Ratio targets are to be met on the cluster is much longer. In
principle, uni-processor-like Fair Share-ness is
asymptotically achievable on clusters over an infinite time
horizon.

Theoretically speaking, as long as all the cluster users
have jobs in the queue, then over a sufficiently long time
horizon they will all reach a Service Ratio of 1.

On a supercomputer such as Blue Mountain, Fair
Share is not playing a big role because the machine is run
at a sufficiently low usage, insuring timely and effective
turnaround. Fair Share’s main role on Blue Mountain is
essentially as a moderator for cases of queue flooding.

Our results are not meant to be an indictment of Fair
Share systems, but rather an indication that its role in
clusters without checkpointing is quite different from that
found on uni-processors. Our conclusions should apply to
other large grids that use Fair Share with groups and run at
utilizations of about 80% or less on average, as is the case
with Blue Mountain. For higher utilizations, Fair Share
behavior on a cluster approaches that of a uni-processor.,
albeit with a much time horizon.

Grid operators need to distinguish between the
complementary goals of rapid turnaround and running the
machine at maximum utilization. To achieve the first
requires a “spare capacity” or “over design” or “under
subscription.” While seemingly wasteful of resources, this
strategy of spare capacity is inseparable from the need for
accommodating the very large jobs that are the raison
d'être for grids such as the ASCI machines. In other words,
the worth of the grid is not necessarily in being able to
simply supply a large compute resource over time, but to
have that supply readily available on short notice.

From a more analytic perspective, spare or reservoir
capacity can be shown to be to vital to handling clustering
of jobs that occur over time leading to queue floods and
droughts[9].

If the goal is to make Fair Share on grids perform as
on a uni-processor, then gang-scheduling could be
used[10]. However, has its own set of issues involving
what in many cases is a significant cost of migration,
unlike that of processes on a uni-processor.

Another possible alternative to fairly sharing
supercomputer resources is to employ a market-based
approach in which the users themselves determine the
priority of their jobs (within some limits)[11]. This
approach empowers users to determine the relative
priority of their own jobs rather than having it decided by
an algorithm.

Acknowledgements

This paper would not have been possible without the
expertise of many people who provided us with detailed
knowledge of algorithms, data formats, as well as
providing the job log data. The authors gratefully
acknowledge the assistance of Stephany Boucher, Charles
Hales, Tom Klingner, Jerry Melendez, and Randall
Rheinheimer. We also wish to thank the anonymous
reviewers for their helpful comments. Sandia is a
multiprogram laboratory operated by Sandia Corporation,
a Lockheed Martin Company, for the United States
Department of Energy under Contract DE-AC04-
94AL85000.

References

[1] S. H. Clearwater and S. D. Kleban, “Heavy-Tailed

Distributions in Supercomputer Jobs”, Sandia National
Laboratories SAND2002-2378C (2002).

[2] LSF Batch Administrator’s Guide, Sixth Edition, Platform
Computing Corporation (1998).
[3] DPCS Reference Manual (unpublished).
[4] J. Kay and P. Lauder, “A Fair Share Scheduler”
Communications of the ACM, vol. 31 pp.44-55 (1988).

[5] C. A. Waldspurger and W. E. Weihl, “Lottery Scheduling:
Flexible Proportional-Share Resource Management” in
Proceedings of the First Symposium on Operating Systems
Design and Implementation, November, (1994), pp.1-11.

[6] S. H. Clearwater and S. D. Kleban “Relaxation Phenomena
in Supercomputer Jobs”, http://www.arxiv.org/abs/cond-
mat/0208531 (2002).
[7] S. D. Kleban and S. H. Clearwater, “A Big Iron Resource

Management Simulation System” in Proceedings of the
Advanced Simulation Technologies Conference 2002, San
Diego, CA 14-18 April (2002).
[8] Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery,

B. P., Numerical Recipes in C Cambridge, New York (1988).
[9] S. D. Kleban andS. H. Clearwater, in preparation.
[10] D. G. Feitelson and M. A. Jette, “Improved Utilization and
Responsiveness with Gang Scheduling” In Job Scheduling
Strategies for Parallel Processing D. G. Feitelson and L.
Rudolph (eds.) Lecture Notes Computer Science Vol. 1291
(1997), pp. 238-261.
[11] S. Kleban and S. Clearwater, “A Market-Based

Architecture for Supercomputer Resource Management” in
Proceedings of the ACM/IEEE Super Computing 2001, Denver,
CO, Nov 10-16 (2001).

Proceedings of the 3rd IEEE/ACM International Symposium on Cluster Computing and the Grid (CCGRID�03)
0--7695-1919-9/03 $17.00 © 2003 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

