Proportional Share Scheduling in Single-Server and
Multiple-Server Computing Systems

D.H.J. Epema and J.F.C.M. de Jongh
Faculty of Information Technology and Systems
Delft University of Technology
P.O. Box 356, 2600 AJ Delft
The Netherlands
epema@cs.tudelft.nl

Abstract

Proportional Share Scheduling (PSS), which is the allocation of
prespecified fractions of a certain resource to different classes of
customers, has been studied both in the context of the allocation
of network bandwidth and of processors. Much of this work has
focused on systems with a single scheduler and when all classes
of customers are constantly backlogged. We study the objectives
and performance of PSS policies for processor scheduling when
these conditions do not hold.

1 The Setting

Proportional Share Scheduling (PSS), which is the
allocation of prespecified fractions of a certain re-
source to different classes of customers, has been
studied in the contexts of scheduling processors
among classes of jobs and of allocating the capac-
ity of a network link to packet streams; in the latter
context, PSS is often called fair queueing. These
two contexts exhibit important differences in char-
acteristics of the environments in which PSS is to
be achieved: Tn the network case, preemption is
not allowed, packets have to be sent in the order
of arrival, and the time scale is microseconds, while
in the processor case, preemption is often possible,
jobs may be run simultaneously, and the time scale
is at least seconds. The performance metric usu-
ally employed for PSS policies 1s the deviation from
some Processor-Sharing (PS) policy which is emu-
lated when each of the customer classes 1s constantly
backlogged. Most of the work on PSS policies has
been done for single-server systems. In contrast, we
study PSS policies for processors in distributed sys-
tems. The two basic questions we study are suitable
performance metrics for such policies, especially in
the face of insufficient workload of customer classes,
inhomogeneous systems, and the absence of job mi-
gration, and the tradeoff between the global and lo-
cal components of such policies.

The motivation for PSS in networks is to deliver
Quality-of-Service guarantees to packet streams that
carry continuous real-time data such as speech or
video. PSS for sharing processors is useful for sup-
porting applications that deliver these data (e.g.,
(de-)compressing video data), and for fairly sharing

large computing facilities.

In our model, each group of jobs has a required
share, which is the fraction of the total system ca-
pacity it 1s entitled to. There are different reasons
why groups may at certain times not receive their
required shares, such as a lack of offered workload.
Therefore, we define the feasible group shares of
groups, which are the shares that may reasonably
be expected from the system simultaneously. Defin-
ing the obtained shares of groups in the obvious way,
our most important performance metric is the group
share deviation during a group’s busy periods, which
measures the relative difference between the feasible
and obtained shares, and the maximum of their ex-
pected values across all groups. In addition, we con-
sider the capacity lost due to waiting jobs at some
processors while other processors are idle, and to the
use of slow instead of fast processors.

In our research, we study combinations of different,
local (uniprocessor) policies such as FCFS, Priority
Queueing and various forms of PS, and of static and
dynamic global policies. Among the dynamic global
policies are Horizontal and Vertical Partitioning (HP
and VP), in which each processor tries to deliver
the required shares, and processors are dedicated to
single groups in proportion to their required shares,
respectively, and which may also allow migrations.
Among the static ones is random splitting.

For lack of space and because we are report-
ing on ongoing work, this paper contains only par-
tial results. Tn particular, we restrict ourselves to
queneing-theoretic results (and so we do not deal
with HP and VP, for which we have to resort to sim-
ulations), and we omit most of the proofs. Review
of work on PPS for sharing processors and network

bandwidth can be found in [4] and [6], respectively.
2 The Model

In this section we present our model of propor-
tional share scheduling in single-server and multiple-
server computing systems.

2.1 Processors and Jobs

We define a general model of distributed systems
consisting of uniprocessors of possibly different ca-
pacities. In order to model the user behavior of sub-
mitting a job and then waiting for the results before
resubmitting it with different parameters, we intro-
duce permanent, jobs which re-enter the system as
soon as they are finished, in addition to the ordi-
nary arrival streams of jobs.

e There are P processors, processor p having
capacity cp,, p = 1,..., P. We assume that
cp > g > -0 > ocp.
the system is ¢ = Zp Cp-

The total capacity of

e There are G groups of (single-task) jobs. Jobs
are either non-permanent or permanent. The
non-permanent, jobs of group ¢ arrive accord-
ing to a Poisson arrival process with rate A, A
permanent job immediately re-enters the sys-
tem (with a new service demand) when it fin-
ishes.

e The jobs of group g, both the permanent and
the non-permanent ones, have service-time dis-
tribution Hy(t) with mean s, on a unit-capacity
processor. On processor p, the service-time dis-
tribution of group-g jobs is Hy(cpt). The traffic
intensity of group ¢ due to its non-permanent
jobs is p, = Ays,/c. The total traffic intensity

s p=7>_ pg-

o Group g has a required share r,, which is the
fraction of the system capacity group g 1s en-
titled to. We assume that 0 < vy, < 1,9 =
1,...,, and that Zgrg: 1.

We denote by N(NF), Ng(/\ff) and Ny, the total
number of (permanent) jobs in the system, the to-
tal number of (permanent) jobs of group ¢ in the
system, and the total number of jobs of group ¢ on

processor p, respectively.
2.2 Local Scheduling Policies

We study five local scheduling policies, which we
First
Come First Served (FCFS) does not need any com-

assume to be the same on every processor.

ment. Tn Priority Queueing (PQ), the jobs of group
g1 have preemptive priority over the jobs of g if
rg, > T4y, and the jobs of groups with equal required
shares share a single FOFS queue at a single priority
level. Tn PQ, it makes no sense to have permanent
jobs, unless perhaps at the lowest priority level.
The three other policies are Processor Sharing
(PS) and two of its variations, Priority Processor
Sharing (PPS) and Group Priority Processor Shar-
ing (GPPS). Tn PS; all jobs continuously receive ser-
vice at the same rate. Tn PPS (sometimes also called

Discriminatory or Generalized Processor Sharing),
the service rate of a job 1s proportional to the re-
quired share 7, of its group. In GPPS, the total ser-
vice rate of group g is proportional to r;, with the

jobs of the same group having equal service rates. As

a consequence, we can define the obtained job share
of a job of group g on processor p in a distributed
system with total capacity ¢ as

PS: (>, th)qcp
PPS : (>, thrh)qrgcp

GPPS: (e Zh’th>0 7”17,)*1 n;1rg(:p

For FOFS and PQ, the obtained share of such a job
is either ¢, /c or 0, depending on whether the job is
in service or not. Note that on a uniprocessor with
PS, PPS, or GPPS, the service-time distribution of
the permanent jobs is irrelevent.

2.3 Global Scheduling Policies

In this paper we consider as a global scheduling
policy only random splitting, which is a static policy.
In random splitting, a single global job scheduler
makes all scheduling decisions and sends an arriving

job of group g to processor p according to a fixed

probability for every g and p.
2.4 Performance Metrics

Our main performance objective is to have groups
obtain their required shares. However, there are var-
ious obstacles for groups to do so.

First of all, groups may not offer enough load to
the system. For instance, in a homogeneous system
with P processors, there is no way to deliver the
required share to group ¢ when Ng/P < r.

Second, even when in inhomogeneous systems
each group might obtain its required share sepa-
rately, this may not be possible simultaneously. As
an example, consider a system with P = 3 ¢y = 2,
and e = ez = 1. If 1 =79 = 0.4 and groups 1 and
2 have one job each in the system, they can both be
given a fraction of 0.8 of processor 1 separately, but
the jobs of groups 1 and 2 can never be given more
than the sum of the capacities of processors 1 and
2, which amounts to a fraction of (.75 of the total
capacity. Job migration would not help here.

Third, the absence of job migration may make
it impossible to deliver the required shares. As an
example, consider a homogeneous system with two
processors and three groups with each a required
share of 0.33.. and one job in the system. Without

job migration, we cannot do anything else but put

two jobs on one processor and one on the other, with
the groups of the former two jobs receiving a share
of 0.25 each. With job migration we can have one

job spend one third of its time being serviced on
either of the processors.

We conclude that we need a definition of a feasi-
ble group share as a yard stick of how well a share-
scheduling policy performs. We define the feasible
group share f, of group g as

fg = min(rg, Ny/P).

We can guarantee shares of N,/P for every group
simultaneously because ...

Theorem If .., there exists a schedule for ...

We define the obtained share group share o4 of
group ¢ as the sum of the obtained shares of its
jobs in the system as defined in Section 2.2, and the
total obtained share o as the sum of the obtained
group shares. Because of the definition of obtained
job share, the obtained group share and the total
obtained share are normalized to be within the range
[0,1].

The group-share deviation of group ¢ confined to
busy periods 1s now defined as

ABGRP _ p [.fg — O
J g

This metric averages the deviation of shares over

0]

some period of time rather than taking the maxi-
mum deviation, which is usually done in bandwidth
scheduling [6]. The smaller AB-GRP is the better
the performance, with non-positive values indicating
a large enough average obtained share. Our overall
metric for share compliance is the group-share devi-
ation confined to busy periods

AB.GRP _ min{A?,GR.P}g

This is a worst-case metric (minimizing over all
groups), as opposed by the metric proposed by [1],
which considers the vector of share deviations of all
groups and uses stochastic majorization for perfor-
mance comparisons.

Finally, defining the total feasible share by

min(N,P)

the capacity loss in the system defined as

A=E[f o] (1)

3 Results for Single-Server Systems

In this section we derive some results for unipro-
cessors; we restrict our attention to FCFS, PS, and
PPS. As these local policies are work conserving, ca-
pacity loss cannot occur. During a busy period of

group g, of course f, =r,, and so

E[o]
rgP[Ng > 0]
(2)
, 2i;) denotes the probability-
of the

ABGRP _ @ [.fg Y%
J g

o]

Tn this section p(z1, . ..

generating function numbers of non-

permanent jobs.
Proposition. In an FCFS single-server system
with exponential service-time distributions with the
same means for all groups, and in a PS single-
server system with erxponential service-time distri-
butions with possibly different means for the groups,

| NP 41
_ —/r
26) = (1 nggz.q) - @)

ProoF. For FCFS, see [3]. For PS, one can easily
show that the coefficients of (3) satisfy the forward
Kolmogorov equations.

we have

p(Z]7...

Proposition. If in a single-server system with
FCFS, PS, or PPS, group ¢ has permanent jobs,
its group-share deviation confined to busy periods is

qgiven by

ABGRP _ ¢ _ Py +s(1 —p)
g ry

)

with s equal to

FCFS: s = Nfsg/z N,fsh,
h
PS: s= NJ/NF
PPS:

5= Nfrg/z NFPry,
h

ProoF. Use (2) with E[og] = pg + s(1 — p) and
P[N, > 0] =1.

Proposition. If in a single-server system with

FCFEFS, PS, or PPS, group ¢ does not have perma-
nent jobs, its group-share deviation confined to busy
periods 1s given by

NP 41 -1
AR,GR.P:17P_,<7 1(I—p) .
g rg T—(p—ry)

ProoF. By (3), P[Ny > (] is equal to

| (1—p)NP“
1 —p+pg ’

so, because Flog] = py, (2) yields the desired result.

T—p(1,...,1,0,1,..

1) =

4 Random Splitting in Multiple-Server Sys-
tems

We now turn our attention to distributed systems
with random splitting as the global scheduling pol-
icy. We assume PS as the local policy. Minimization
of a weighted sum of the response times of the groups
under random splitting has been studied in [2] and
[5] with FCFS and with the locally optimal policy
dictated by the so-called ¢/p-rule on each proces-
sor, respectively. Tn both papers, different proces-
sors speeds and different general service-time distri-
butions of groups are allowed.

Our general problem can be posed in the follow-
ing way. (ziven the number P of processors and their
capacities ¢,, the number of groups (¢ and their re-
quired shares r,, their arrival rates A;, and their
service-time distributions, find the routing matrix
g of the fractions of jobs of group g sent to pro-
cessor p such that all queues are stable, and that
ASREB o1 A (or both, if that is possible) is mini-
mized. Here we impose the severe restrictions that
the system is homogeneous and that there are no
permanent jobs, and we only consider the capac-
ity loss. In fact, what we then study i1s more of
a load-balancing problem that a proportional-share
scheduling problem.

4.1 Minimizing Capacity Loss

In this section we study the minimization of ca-
pacity loss for homogeneous systems without per-
manent jobs. We will denote the minimum value
of A by AMIN_ By (1), and because E[o] = p, the
minimization of capacity loss amounts to the mini-
mization of the expected value of the feasible share

[

Proposition. In a homogeneous system without
permanent jobs, the capacity loss 1s minimazed when
the processor loads are equal.

Theorem. (a) In a homogeneous system without

permanent jobs, the minimum capacity loss 1s given
by

AMIN:17p+(1 —p) i(PfN)pN <P+N1)

(b) For p < 0.5 we have

AMIN _ P2

hm .
T—p

P—oo
(¢) For p > 0.5 we have

lim AMN —1 5.
P p

[5] J.

Proov¥. (a) The feasible share f is equal to 1, unless
N < P, in which case f = (P — N)/P. Because the
probability of having k jobs in an M/M/1 qgueue is
(1—p)p", the joint probability of having n, jobs on
processors p,p = 1,..., P, with Y"n, = N, is (1 —
0)7 pV. Because the binomial coefficient in (4) is the
number of ways of putting N jobs on P processors,
(4) follows.

(b) The mean number of jobs in an M/M/1 queue
is given by p/(1 — p), which is less than or exceeds 1
for p < 0.5 and p > 0.5, respectively. For increasing
values of P, the distribution of the numbers of jobs
on the processors will increasingly well reflect the
(discrete) distribution of the number of jobs in an
M/M/1 queue, and so for p < 0.5, E[f] approaches
p/(1 — p). Now by (1) and because E[o] = p, (5)
follows.

(¢) When p > 0.5, p/(1 — p) > 1, and so E[f]
approaches 1, and by (1), we can conclude (6).

We find the result in (4) more meaningful than the
so-called wait-while-idle probability (the probability
that at some processor jobs are waiting while other
processors are idle) as a measure for the success of
load balancing. In Figure .., we show a graph of
AMIN ag a function of p for different numbers of
processors.

References

[1] O. Abuamsha and N. Pekergin. Comparison of
fair queuing algorithms with a stochastic ap-
proach. In Proc. of Mascots 98, pages 139 144,
1998.

[2] S. Borst. Optimal probabilistic allocation of cus-
tomer types to servers. In Proc. of Sigmetrics

'95/Performance '95, pages 116 125, 1995.
[3] O.J. Boxma and J.W. Cohen. The M/G/1 queue

with permanent customers. IFEF J. Selected Ar-
eas i Communications, 9:179 184, 1991.

[4] D.H.J. Epema. Decay-usage scheduling in multi-
processors. ACM Trans. on Comp. Syst., 16:367
415, 1998.

Opti-
mal stochastic scheduling in multiclass parallel
queues. In Proc. of Sigmetrics 99, pages 93
102, 1999.

Sethuraman and M.S. Squillante.

[6] H. Zhang. Services disciplines for guaranteed
performance service in packet-switching net-

works. Proc. of the TEFFE, 83:1374 1396, 1995.

