
Proportional Share Scheduling in Single-Server andMultiple-Server Computing SystemsD.H.J. Epema and J.F.C.M. de JonghFaculty of Information Technology and SystemsDelft University of TechnologyP.O. Box 356, 2600 AJ DelftThe Netherlandsepema@cs.tudelft.nlAbstractProportional Share Scheduling (PSS), which is the allocation ofprespeci�ed fractions of a certain resource to di�erent classes ofcustomers, has been studied both in the context of the allocationof network bandwidth and of processors. Much of this work hasfocused on systems with a single scheduler and when all classesof customers are constantly backlogged. We study the objectivesand performance of PSS policies for processor scheduling whenthese conditions do not hold.1 The SettingProportional Share Scheduling (PSS), which is theallocation of prespeci�ed fractions of a certain re-source to di�erent classes of customers, has beenstudied in the contexts of scheduling processorsamong classes of jobs and of allocating the capac-ity of a network link to packet streams; in the lattercontext, PSS is often called fair queueing. Thesetwo contexts exhibit important di�erences in char-acteristics of the environments in which PSS is tobe achieved: In the network case, preemption isnot allowed, packets have to be sent in the orderof arrival, and the time scale is microseconds, whilein the processor case, preemption is often possible,jobs may be run simultaneously, and the time scaleis at least seconds. The performance metric usu-ally employed for PSS policies is the deviation fromsome Processor-Sharing (PS) policy which is emu-lated when each of the customer classes is constantlybacklogged. Most of the work on PSS policies hasbeen done for single-server systems. In contrast, westudy PSS policies for processors in distributed sys-tems. The two basic questions we study are suitableperformance metrics for such policies, especially inthe face of insu�cient workload of customer classes,inhomogeneous systems, and the absence of job mi-gration, and the tradeo� between the global and lo-cal components of such policies.The motivation for PSS in networks is to deliverQuality-of-Service guarantees to packet streams thatcarry continuous real-time data such as speech orvideo. PSS for sharing processors is useful for sup-porting applications that deliver these data (e.g.,(de-)compressing video data), and for fairly sharing

large computing facilities.In our model, each group of jobs has a requiredshare, which is the fraction of the total system ca-pacity it is entitled to. There are di�erent reasonswhy groups may at certain times not receive theirrequired shares, such as a lack of o�ered workload.Therefore, we de�ne the feasible group shares ofgroups, which are the shares that may reasonablybe expected from the system simultaneously. De�n-ing the obtained shares of groups in the obvious way,our most important performance metric is the groupshare deviation during a group's busy periods, whichmeasures the relative di�erence between the feasibleand obtained shares, and the maximum of their ex-pected values across all groups. In addition, we con-sider the capacity lost due to waiting jobs at someprocessors while other processors are idle, and to theuse of slow instead of fast processors.In our research, we study combinations of di�erentlocal (uniprocessor) policies such as FCFS, PriorityQueueing and various forms of PS, and of static anddynamic global policies. Among the dynamic globalpolicies are Horizontal and Vertical Partitioning (HPand VP), in which each processor tries to deliverthe required shares, and processors are dedicated tosingle groups in proportion to their required shares,respectively, and which may also allow migrations.Among the static ones is random splitting.For lack of space and because we are report-ing on ongoing work, this paper contains only par-tial results. In particular, we restrict ourselves toqueueing-theoretic results (and so we do not dealwith HP and VP, for which we have to resort to sim-ulations), and we omit most of the proofs. Reviewof work on PPS for sharing processors and networkbandwidth can be found in [4] and [6], respectively.2 The ModelIn this section we present our model of propor-tional share scheduling in single-server and multiple-server computing systems.



2.1 Processors and JobsWe de�ne a general model of distributed systemsconsisting of uniprocessors of possibly di�erent ca-pacities. In order to model the user behavior of sub-mitting a job and then waiting for the results beforeresubmitting it with di�erent parameters, we intro-duce permanent jobs which re-enter the system assoon as they are �nished, in addition to the ordi-nary arrival streams of jobs.� There are P processors, processor p havingcapacity cp, p = 1; : : : ; P . We assume thatc1 � c2 � � � � � cP . The total capacity ofthe system is c =Pp cp.� There are G groups of (single-task) jobs. Jobsare either non-permanent or permanent. Thenon-permanent jobs of group g arrive accord-ing to a Poisson arrival process with rate �g. Apermanent job immediately re-enters the sys-tem (with a new service demand) when it �n-ishes.� The jobs of group g, both the permanent andthe non-permanent ones, have service-time dis-tributionHg(t) with mean sg on a unit-capacityprocessor. On processor p, the service-time dis-tribution of group-g jobs is Hg(cpt). The tra�cintensity of group g due to its non-permanentjobs is �g = �gsg=c. The total tra�c intensityis � =Pg �g.� Group g has a required share rg, which is thefraction of the system capacity group g is en-titled to. We assume that 0 < rg < 1; g =1; : : : ; G, and that Pg rg = 1.We denote by N (NP ); Ng(NPg ) and Ngp the totalnumber of (permanent) jobs in the system, the to-tal number of (permanent) jobs of group g in thesystem, and the total number of jobs of group g onprocessor p, respectively.2.2 Local Scheduling PoliciesWe study �ve local scheduling policies, which weassume to be the same on every processor. FirstCome First Served (FCFS) does not need any com-ment. In Priority Queueing (PQ), the jobs of groupg1 have preemptive priority over the jobs of g2 ifrg1 > rg2 , and the jobs of groups with equal requiredshares share a single FCFS queue at a single prioritylevel. In PQ, it makes no sense to have permanentjobs, unless perhaps at the lowest priority level.The three other policies are Processor Sharing(PS) and two of its variations, Priority ProcessorSharing (PPS) and Group Priority Processor Shar-ing (GPPS). In PS, all jobs continuously receive ser-vice at the same rate. In PPS (sometimes also called

Discriminatory or Generalized Processor Sharing),the service rate of a job is proportional to the re-quired share rg of its group. In GPPS, the total ser-vice rate of group g is proportional to rg, with thejobs of the same group having equal service rates. Asa consequence, we can de�ne the obtained job shareof a job of group g on processor p in a distributedsystem with total capacity c asPS : (cPhNhp)�1cpPPS : (cPh Nhprh)�1rgcpGPPS : (cPh;Nhp>0 rh)�1n�1g rgcpFor FCFS and PQ, the obtained share of such a jobis either cp=c or 0, depending on whether the job isin service or not. Note that on a uniprocessor withPS, PPS, or GPPS, the service-time distribution ofthe permanent jobs is irrelevent.2.3 Global Scheduling PoliciesIn this paper we consider as a global schedulingpolicy only random splitting, which is a static policy.In random splitting, a single global job schedulermakes all scheduling decisions and sends an arrivingjob of group g to processor p according to a �xedprobability for every g and p.2.4 Performance MetricsOur main performance objective is to have groupsobtain their required shares. However, there are var-ious obstacles for groups to do so.First of all, groups may not o�er enough load tothe system. For instance, in a homogeneous systemwith P processors, there is no way to deliver therequired share to group g when Ng=P < rg.Second, even when in inhomogeneous systemseach group might obtain its required share sepa-rately, this may not be possible simultaneously. Asan example, consider a system with P = 3; c1 = 2,and c2 = c3 = 1. If r1 = r2 = 0:4 and groups 1 and2 have one job each in the system, they can both begiven a fraction of 0:8 of processor 1 separately, butthe jobs of groups 1 and 2 can never be given morethan the sum of the capacities of processors 1 and2, which amounts to a fraction of 0:75 of the totalcapacity. Job migration would not help here.Third, the absence of job migration may makeit impossible to deliver the required shares. As anexample, consider a homogeneous system with twoprocessors and three groups with each a requiredshare of 0:33:: and one job in the system. Withoutjob migration, we cannot do anything else but puttwo jobs on one processor and one on the other, withthe groups of the former two jobs receiving a shareof 0:25 each. With job migration we can have one



job spend one third of its time being serviced oneither of the processors.We conclude that we need a de�nition of a feasi-ble group share as a yard stick of how well a share-scheduling policy performs. We de�ne the feasiblegroup share fg of group g asfg = min(rg ; Ng=P ):We can guarantee shares of Ng=P for every groupsimultaneously because ...Theorem If .., there exists a schedule for ...We de�ne the obtained share group share og ofgroup g as the sum of the obtained shares of itsjobs in the system as de�ned in Section 2.2, and thetotal obtained share o as the sum of the obtainedgroup shares. Because of the de�nition of obtainedjob share, the obtained group share and the totalobtained share are normalized to be within the range[0; 1].The group-share deviation of group g con�ned tobusy periods is now de�ned as�B;GRPg = E � fg � ogfg ����Ng > 0� :This metric averages the deviation of shares oversome period of time rather than taking the maxi-mum deviation, which is usually done in bandwidthscheduling [6]. The smaller �B;GRPg is, the betterthe performance, with non-positive values indicatinga large enough average obtained share. Our overallmetric for share compliance is the group-share devi-ation con�ned to busy periods�B;GRP = minf�B;GRPg ggThis is a worst-case metric (minimizing over allgroups), as opposed by the metric proposed by [1],which considers the vector of share deviations of allgroups and uses stochastic majorization for perfor-mance comparisons.Finally, de�ning the total feasible share byf = 1c min(N;P )Xp=1 cp;the capacity loss in the system de�ned as� = E[f � o]: (1)3 Results for Single-Server SystemsIn this section we derive some results for unipro-cessors; we restrict our attention to FCFS, PS, andPPS. As these local policies are work conserving, ca-pacity loss cannot occur. During a busy period of

group g, of course fg = rg, and so�B;GRPg = E � fg � ogfg ����Ng > 0� = 1� E[og ]rgP[Ng > 0] :(2)In this section p(z1; : : : ; zG) denotes the probability-generating function of the numbers of non-permanent jobs.Proposition. In an FCFS single-server systemwith exponential service-time distributions with thesame means for all groups, and in a PS single-server system with exponential service-time distri-butions with possibly di�erent means for the groups,we havep(z1; : : : ; zG) =  1� �1�Pg �gzg!NP+1 : (3)Proof. For FCFS, see [3]. For PS, one can easilyshow that the coe�cients of (3) satisfy the forwardKolmogorov equations.Proposition. If in a single-server system withFCFS, PS, or PPS, group g has permanent jobs,its group-share deviation con�ned to busy periods isgiven by �B;GRPg = 1� �g + s(1 � �)rg ;with s equal toFCFS: s = NPg sg=Xh NPh sh;PS: s = NPg =NPPPS: s = NPg rg=Xh NPh rhProof. Use (2) with E[og ] = �g + s(1 � �) andP[Ng > 0] = 1.Proposition. If in a single-server system withFCFS, PS, or PPS, group g does not have perma-nent jobs, its group-share deviation con�ned to busyperiods is given by�B;GRPg = 1� �grg "1� � 1� �1� (� � �g)�NP+1#�1 :Proof. By (3), P[Ng > 0] is equal to1�p(1; : : : ; 1; 0; 1; : : :; 1) = 1�� 1� �1� �+ �g�NP+1 ;so, because E[og] = �g , (2) yields the desired result.



4 Random Splitting in Multiple-Server Sys-temsWe now turn our attention to distributed systemswith random splitting as the global scheduling pol-icy. We assume PS as the local policy. Minimizationof a weighted sum of the response times of the groupsunder random splitting has been studied in [2] and[5] with FCFS and with the locally optimal policydictated by the so-called c=�-rule on each proces-sor, respectively. In both papers, di�erent proces-sors speeds and di�erent general service-time distri-butions of groups are allowed.Our general problem can be posed in the follow-ing way. Given the number P of processors and theircapacities cp, the number of groups G and their re-quired shares rg, their arrival rates �g , and theirservice-time distributions, �nd the routing matrix�gp of the fractions of jobs of group g sent to pro-cessor p such that all queues are stable, and that�GRP;B or � (or both, if that is possible) is mini-mized. Here we impose the severe restrictions thatthe system is homogeneous and that there are nopermanent jobs, and we only consider the capac-ity loss. In fact, what we then study is more ofa load-balancing problem that a proportional-sharescheduling problem.4.1 Minimizing Capacity LossIn this section we study the minimization of ca-pacity loss for homogeneous systems without per-manent jobs. We will denote the minimum valueof � by �MIN. By (1), and because E[o] = �, theminimization of capacity loss amounts to the mini-mization of the expected value of the feasible sharef .Proposition. In a homogeneous system withoutpermanent jobs, the capacity loss is minimized whenthe processor loads are equal.Theorem. (a) In a homogeneous system withoutpermanent jobs, the minimum capacity loss is givenby�MIN = 1��+(1 � �)PP P�1XN=0(P�N )�N �P + N � 1N � :(4)(b) For � � 0:5 we havelimP!1�MIN = �21� � : (5)(c) For � � 0:5 we havelimP!1�MIN = 1� �: (6)

Proof. (a) The feasible share f is equal to 1, unlessN < P , in which case f = (P �N )=P . Because theprobability of having k jobs in an M/M/1 queue is(1��)�N , the joint probability of having np jobs onprocessors p; p = 1; : : : ; P , with Pnp = N , is (1 ��)P �N . Because the binomial coe�cient in (4) is thenumber of ways of putting N jobs on P processors,(4) follows.(b) The mean number of jobs in an M/M/1 queueis given by �=(1��), which is less than or exceeds 1for � < 0:5 and � � 0:5, respectively. For increasingvalues of P , the distribution of the numbers of jobson the processors will increasingly well re
ect the(discrete) distribution of the number of jobs in anM/M/1 queue, and so for � � 0:5, E[f ] approaches�=(1 � �). Now by (1) and because E[o] = �, (5)follows.(c) When � � 0:5, �=(1 � �) � 1, and so E[f ]approaches 1, and by (1), we can conclude (6).We �nd the result in (4) more meaningful than theso-called wait-while-idle probability (the probabilitythat at some processor jobs are waiting while otherprocessors are idle) as a measure for the success ofload balancing. In Figure .., we show a graph of�MIN as a function of � for di�erent numbers ofprocessors.References[1] O. Abuamsha and N. Pekergin. Comparison offair queuing algorithms with a stochastic ap-proach. In Proc. of Mascots '98, pages 139{144,1998.[2] S. Borst. Optimal probabilistic allocation of cus-tomer types to servers. In Proc. of Sigmetrics'95/Performance '95, pages 116{125, 1995.[3] O.J. Boxma and J.W. Cohen. The M/G/1 queuewith permanent customers. IEEE J. Selected Ar-eas in Communications, 9:179{184, 1991.[4] D.H.J. Epema. Decay-usage scheduling in multi-processors. ACM Trans. on Comp. Syst., 16:367{415, 1998.[5] J. Sethuraman and M.S. Squillante. Opti-mal stochastic scheduling in multiclass parallelqueues. In Proc. of Sigmetrics '99, pages 93{102, 1999.[6] H. Zhang. Services disciplines for guaranteedperformance service in packet-switching net-works. Proc. of the IEEE, 83:1374{1396, 1995.


