
BENCHMARKING PLATFORMS FOR
LARGE-SCALE GRAPH
PROCESSING AND RDF DATA
MANAGEMENT

The LDBC Approach

Your hosts today

¨  Alexandru Iosup, Tim Hegeman
¤ Delft University of Technology, The Netherlands

¨  Ana Lucia Varbanescu
¤ Unviersity of Amsterdam, The Netherlands

¨  Arnau Prat Perez
¤ UPC Barcelona, Spain

¨  Mihai Capota
¤  Intel Labs, USA

Agenda

¨  Introduction to Linked Data
¨  LDBC Social Network Benchmark (SNB)
¨  Graphalytics

¤  Systems and models
¤  Methodology for performance evaluation of graph-processing

platforms
¤  Graphalytics architecture

¨  The hour of benchmarking
¤  Hands-on Graphalytics

n  Results analysis & lessons learned
¤  Fine-grained in-depth analysis with Granula

¨  Summary & Panel/open discussion

Size matters
The need for benchmarking

Linked data

The data deluge: large-scale graphs
5

270M MAU
200+ avg followers

>54B edges

1.2B MAU 0.8B DAU
200+ avg followers

>240B edges

300M users

??? edges

The data deluge: large-scale graphs	
�
6

270M MAU
200+ avg followers

>54B edges

1.2B MAU 0.8B DAU
200+ avg followers

>240B edges

company/day:
40-60 posts, 500-700 comments

 Oracle 1.2M followers,
 132k employees

7

The data deluge: large-scale graphs	
�

270M MAU
200+ avg followers

>54B edges

1.2B MAU 0.8B DAU
200+ avg followers

>240B edges

company/day:
40-60 posts, 500-700 comments

 Oracle 1.2M followers,
 132k employees

Data-intesive workload
10x graph size è 100x—1,000x slower

8

The data deluge: large-scale graphs	
�

270M MAU
200+ avg followers

>54B edges

1.2B MAU 0.8B DAU
200+ avg followers

>240B edges

company/day:
40-60 posts, 500-700 comments

Compute-intesive workload
more complex analysis è ?x slower

 Oracle 1.2M followers,
 132k employees

Data-intesive workload
10x graph size è 100x—1,000x slower

9

The data deluge: large-scale graphs	
�

270M MAU
200+ avg followers

>54B edges

1.2B MAU 0.8B DAU
200+ avg followers

>240B edges

company/day:
40-60 posts, 500-700 comments

Compute-intesive workload
more complex analysis è ?x slower

Dataset-dependent workload
unfriendly graphs è ??x slower

 Oracle 1.2M followers,
 132k employees

Data-intesive workload
10x graph size è 100x—1,000x slower

Graphs at the Core of Our Society:
The LinkedIn Example

10

Feb 2012

100M Mar 2011, 69M May 2010 Sources: Vincenzo Cosenza, The State of LinkedIn, http://vincos.it/the-state-of-linkedin/
via Christopher Penn, http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/

A very good resource for matchmaking workforce
and prospective employers

Vital for your company’s life,
as your Head of HR would tell you

Vital for the prospective employees

Graphs at the Core of Our Society:
The LinkedIn Example

11
Sources: Vincenzo Cosenza, The State of LinkedIn, http://vincos.it/the-state-of-linkedin/
via Christopher Penn, http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/

Apr 2014

Graphs at the Core of Our Society:
The LinkedIn Example

12

Feb 2012
100M Mar 2011, 69M May 2010

Sources: Vincenzo Cosenza, The State of LinkedIn, http://vincos.it/the-state-of-linkedin/
via Christopher Penn, http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/

but fewer visitors (and
page views)

3-4 new users every
second

Great, if you can
process this graph:
opinion mining,

hub detection, etc.

Apr 2014 300,000,000 100+ million questions of
customer retention,

of (lost) customer influence,
of ...

Graphs at the Core of Our Society:
The LinkedIn Example

13

Feb 2012
100M Mar 2011, 69M May 2010

Sources: Vincenzo Cosenza, The State of LinkedIn, http://vincos.it/the-state-of-linkedin/
via Christopher Penn, http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/

but fewer visitors (and
page views)

3-4 new users every
second

Great, if you can
process this graph:
opinion mining,

hub detection, etc.

Apr 2014 300,000,000 100+ million questions of
customer retention,

of (lost) customer influence,
of ...

Periodic and/or
continuous analytics

at full scale

The “sorry, but…” moment

The “sorry, but…” moment

Supporting multiple users
10x number of users è ????x slower

In this talk …

¨  Graphalytics = Graph analytics
¨  Analytics = any form of graph processing
¨  Platform = hardware and/or software we can tune

and change as a whole
¨  (Graph) Processing system = computing system that

includes one or more platforms (for graph processing)

Agenda

¨  Introduction to Linked Data
¨  LDBC Social Network Benchmark (SNB)
¨  Graphalytics

¤  Systems and models
¤ Methodology for performance evaluation of graph-

processing platforms
¤ Graphalytics architecture

¨  The hour of benchmarking
¤ Hands-on Graphalytics

n  Results analysis & lessons learned
¤  Fine-grained in-depth analysis with Granula

¨  Summary & Panel/open discussion

Synthetic graph generation

LDBC Social Network Benchmark (SNB)

Why a synthetic graph generator?
21

¨  Real graphs are sometimes difficult to obtain
n Not practical to distribute TeraBytes of data
n Privacy concerns

¨  Real data do not always have the desired
characteristics

n Many dimensions to be tested (size, distributions, structural
characteristics, etc.) as they can affect the performance of
the tested systems

n Difficult to obtain real data for all the desired dimension
combinations

Generator’s features (wish list)
22

¨  Scalable
¤  From GigaBytes to TeraBytes of data

¨  Realistic
¤ Distributions: attributes, degrees, etc.
¤ Correlations: attributes, edges, etc.
¤  Structural characteristics: clustering coefficient, largest

connected component, diameter, etc.

¨  Flexible
¤ Allow choosing the characteristics of the generated data
¤  Support different output formats

LDBC DATAGEN
23

¨  DATAGEN is a fork of S3G2[1]
¨  Developed during LDBC European Project as the

data generator for the LDBC Social Network
Benchmark Workloads

¨  Available at:
https://github.com/ldbc/ldbc_snb_datagen

[1] Pham, Minh-Duc, Peter Boncz, and Orri Erling. "S3g2: A scalable structure-correlated social
graph generator." Selected Topics in Performance Evaluation and Benchmarking. Springer Berlin
Heidelberg, 2013. 156-172.

LDBC DATAGEN
24

¨  Generates a Social Network graph
¤ Uses dictionaries extracted from Dbpedia to populate

the dataset with realistic attributes
n e.g. Person names, countries, companies, tags (interests)

¤ Correlated attributes
n e.g. Person names with countries, correlations between tags,

etc.
¤ Realistic distributions

n Facebook-like degree distribution, attribute distributions etc.
¤ Event-based user activity generation

n Mimick spikes of activity around specific events

LDBC DATAGEN
25

¨  Built on top of Hadoop
¤ Able to generate Terabytes of data with a small

commodity cluster
¤ Billion edge graphs in few hours

¨  Deterministic

LDBC DATAGEN
26

¨  Continuously evolving towards a more flexible data
generator
¤ Support for different degree distributions: Zipf,

MOEZipf, Geometric, Discrete Weibull, etc.
¤ Able to tune structural characteristics of the network

(e.g. clustering coefficient, assortativity, etc.)
¤ Custom data serializers
¤ A more flexible schema definition

27

Generation Process

Person
Generati

on

Edge
Generation

Activity
Generation

Knows
graph

serializa
tion

Activity
serializa

tion

Graphalytics

28

Person Generation

¨  A 4-machine cluster
¨  100,000 Person network
¨  Block size m= 10,000 => 10 blocks in total

Block n

DBpedia
dictionaries

Random number
generators Degree sequence

generator

P0 P1 P2 … Pm-1

Each block has its
own independent
state, which depends
only on the block id.
This guarantees
determinism.

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 8

Block 9

Node 0

Node 1

Node 2

Node 3

map/reduce

Persons.file

29

Edge Generation

Edge
Generation

Substep
(Main

Interest)

Edge
Generation

Substep
(University-age-

gender)

Edge
Generation

Substep
(Random)

Edges
Merge

30

Edge Generation

Edge
Generation

Substep
(Main

Interest)

Edge
Generation

Substep
(University-age-

gender)

Edge
Generation

Substep
(Random)

Edges
Merge

31

One substep for each
correlation dimension

Edge Generation Substep

Parallel sort
and rank Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 8

Block 9

Edge
generation

32

Persons.file Persons.file.sorted Edge.file.n

Edge Generation Substep

Parallel sort
and rank

¨  Sort by correlation dimension:
¤  e.g. Main interest, University-age,

random

¨  Set Person keys as their position in
the sorted array (between 0 and
N-1)

33

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 8

Block 9

Edge
generation

Persons.file Persons.file.sorted Edge.file.n

Edge Generation Substep

Parallel sort
and rank

Persons.file Persons.file.sorted Edge.file.n
Independent
state

P0 P1 P2 Pm-1

Block n

o  The probability of creating an edge
decreases geometrically with the distance

o  Persons with similar characteristics (close
in the sorted array) are more likely to be
connected, producing a correlated graph

o  The amount of edge a person can create
depends on its assigned target degree

34

Block 0

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

Block 8

Block 9

Edge
generation

Edge Merge

Merge edges Edges.file.0

Edges.file.1

Edges.file.2
To eliminate duplicate edges
between the same pair of Persons

Persons.Edges.file

35

Knows graph serialization

¨  Finally, Persons.Edges.file is read and serialized into
HDFS using a configurable serializer.

¨  Serializers implement ldbc.snb.datagen.serializer*
interfaces
¤ To write to HDFS
¤ To directly bulk load data into the Database System

¨  Provided CSV serializers
¤ Can output compressed files

36

Performance snapshot
37

¨  Cluster with four nodes:
¤  Intel Xeon E5530 @ 2.4 Ghz (4 cores, Year 2010)
¤ 32Gb of RAM
¤ 7200 rpm spinning disks
¤ 1 master, 3 slaves
¤ 12 reducers in total

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0 500 1000 1500 2000 2500 3000 3500

Ti
m

e
(s

)

Millions of Edges

5
hours

Scale Factors

¨  Provided Scale Factors for LDBC SNB Interactive
and Graphalytics

¨  Scale factors are just configuration presets of
DATAGEN

Scale Factor #Persons #Edges

Graphalytics.10 235,000 10,000,000

Graphalytics.30 592,500 30,000,000

Graphalytics.100 1,167,000 100,000,000

Graphalytics.300 4,350,000 300,000,000

Graphalytics.1000 12,750,000 1,000,000,000

Graphalytics.3000 32,500,000 3,000,000,000

Final remarks

¨  The generated Graph is structurally correlated
¤  Persons tend to be connected with similar people

¨  Characteristics typical from real social networks
¤  6-degrees of separation, large connected component,

moderately large clustering coefficient, skewed distribution

¨  Very good scalability: current experiments show linear
scalability

¨  Rapidly evolving to support new features such as tuning
structural properties of the graph, or being able to
change the generated schema

Questions?

¨  References:
¤ Erling, Orri, et al. "The LDBC Social Network

Benchmark: Interactive Workload." Proceedings of the
2015 ACM SIGMOD International Conference on
Management of Data. ACM, 2015.

¤ Capota, M., Hegeman, T., Iosup, A., Prat-Pérez, A.,
Erling, O., & Boncz, P. (2015). Graphalytics: A Big Data
Benchmark for Graph-Processing Platforms.
n http://ldbcouncil.org/sites/default/files/LDBC_D2.2.2.pdf
n http://ldbcouncil.org/sites/default/files/LDBC_D3.3.34.pdf

Systems and models
Methodology
Architecture

Graphalytics

Agenda

¨  Introduction to Linked Data
¨  LDBC Social Network Benchmark (SNB)
¨  Graphalytics

¤  Systems and models
¤ Methodology for performance evaluation of graph-

processing platforms
¤ Graphalytics architecture

¨  The hour of benchmarking
¤ Hands-on Graphalytics

n  Results analysis & lessons learned
¤  Fine-grained in-depth analysis with Granula

¨  Summary & Panel/open discussion

Systems and models

Graph processing @ scale

¨  The characteristics of graph processing
¤ Poor locality
¤ Unstructured computation
¤ Variable parallelism
¤ Low computer-to-memory ratio

¨  @ Scale
¤ Distributed processing is mandatory
¤ Parallel processing is very useful

Implementing graph applications is already difficult. Dealing with large
scale systems on top (below, in fact) them is even harder.

Graph processing systems

¨  Provide simplified ways to develop graph processing
applications
¤  Typical scenario: analytics on single- or multi-node platfoms
¤ Heterogeneity is becoming popular

¨  Target *productivity* and *performance*
¤  Productivity => ease-of-implementation, development time
¤  Performance => optimized back-ends / engines /runtimes
¤  Portability comes “for free”

¨  Both commercial and academic, many open-source

Graph processing systems

Custom

 Generic

Dedicated
Systems

•  Specify application

•  Choose the hardware

•  Implement & optimize

•  Think Graph500

•  Use existing large scale

distributed systems

•  Mapping is difficult

•  Parallelism is “free”

•  Think MapReduce

•  Systems for graph processing

•  Separate users from backends

•  Think Totem, Medusa,

•  Think Giraph, GraphLab, PGX

Performance

Development
Effort

GPU-enabled dedicated systems

Platforms we have evaluated

¨  Accelerated, Dedicated
¤ Medusa
¤ Totem
¤ MapGraph

¨  In progress…
¤ Ligra
¤ Gunrock

Medusa

¨  Enables the use of GPUs for graph processing
¤ Single-node, multiple GPUs
¤  In-memory processing

¨  Simple API that hides GPU programming
¤ Edge- / vertex-granularity that enables fine-grained

parallelism.
¤ API calls are grouped in kernels
¤ Kernels are scheduled on one or multiple GPUs

¨  Run-time for communicating with the GPU

Totem

¨  Enables *single-node* heterogeneous computing on graphs
¤  C+CUDA+API for specifying applications
¤  Based on BSP

¨  Partitions the data (edge-based) between CPUs and GPUs
¤  Based on processing capacity
¤  Minimizing the overhead of communication

n  Buffer schemes, aggregation, smart partitioning

¨  Shows promising performance
¤  BFS
¤  PageRank
¤  Betweenness centrality

MapGraph

¨  Target at high performance graph analytics on
GPUs.

¨  API based on the Gather-Apply-Scatter (GAS)
model as used in GraphLab.
¤ Productivity-oriented API

¨  Single GPU available and Multi-GPU ready
¤ Also available in a CPU-only version

Evaluation setup

¨  Use GPU-enabled graph platforms to compare
their performance*

¨  Datasets:
¤ SNAP repository
¤ Graph500 generated benchmarks

n Scale-22/Synth

¨  Algorithms
¤ BFS (traversal)
¤ PageRank
¤ Weakly connected components

*Accepted in CCGrid’15,
Y.Guo et. al: “”

BFS [algorithm]

100

101

102

103

Amazon
WikiTalk

Citation
KGS

DotaLeague

Scale-22

Al
go

rit
hm

 ru
n

tim
e

[m
s]

Datasets

M
T-H

T-G
MG

BFS [full]

100

101

102

103

104

Amazon
WikiTalk

KGS
Citation

DotaLeague

Synth

Ex
ec

ut
io

n
tim

e
[m

s]

Datasets

M
T-H

T-G
MG

WCC [algorithm]

100

101

102

103

AmazonWCC

WikiTalkWCC

KGS
CitationWCC

DotaLeague

Scale-22

Al
go

rit
hm

 ru
n

tim
e

[m
s]

Datasets

M
T-H

T-G
MG

WCC [full]

100

101

102

103

104

Amazon
WikiTalk

KGS
Citation

DotaLeague

Synth

Ex
ec

ut
io

n
tim

e
[m

s]

Datasets

M
T-H

T-G
MG

PageRank [algorithm]

100

101

102

103

104

Amazon
WikiTalk

Citation
KGS

DotaLeague

Scale-22

Al
go

rit
hm

 ru
n

tim
e

[m
s]

Datasets

M
T-H

T-G
MG

PageRank [full]

100

101

102

103

104

Amazon
WikiTalk

KGS
Citation

DotaLeague

Synth

Ex
ec

ut
io

n
tim

e
[m

s]

Datasets

M
T-H

T-G
MG

Lessons learned

¨  Brave attempts to enable the use of GPUs *inside*
graph processing systems

¨  Every system has its own quirks
¤ Lower level programming allows more optimizations,

better performance
¤ Higher level APIs allow more productivity

¨  No clear winner, performance-wise

Distributed/Large Scale platforms

Interesting platforms

¨  Distributed or non-distributed
¨  Dedicated or generic

YARN

Non-distributed
(Dedicated)

Distributed (Generic)
Distributed
(Dedicated)

Hadoop (Generic)

¨  The most popular MapReduce implementation
¤ Generic system for large-scale computation

¨  Pros:
¤ Easy to understand model
¤ Multitude of tools and storage systems

¨  Cons:
¤ Express the graph application in the form of

MapReduce
¤ Costly disk and network operations
¤ No specific graph processing optimizations

Hadoop2 with YARN (Generic)

¨  Next generation of Hadoop
¤ Supports old MapReduce jobs
¤ Designed to facilitate multiple programming models

(frameworks, e.g., Spark)

¨  Separates resource management (YARN) and
job management
¤ MapReduce manages jobs using resources provided by

YARN

Stratosphere (Generic)

¨  Now Apache Flink
¨  Nephele resource manager

¤ Scalable parallel engine
¤ Jobs are represented as DAGs
¤ Supports data flow in-memory, via network, or on files

¨  PACT job model
¤ 5 second-order functions (MapReduce has 2):

Map, Reduce, Match, Cross, and CogGroup
¤ Code annotations for compile-time plans
¤ Compiled as DAGs for Nephele

Pregel: dedicated graph-processing
model
¨  Proposed a vertex-centric approach to graph processing

¤  Graph-to-graph transformations
¨  Front-end:

¤  Write the computation that runs on all vertices
¤  Each vertex can vote to halt

n  All vertexes halt => terminate
¤  Can add/remove edges and vertices

¨  Back-end:
¤  Uses the BSP model
¤  Message passing between nodes

n  Combiners, aggregators
¤  Checkpointing for fault-tolerance

Pregel

Pregel

Apache Giraph (Dedicated)

¨  Based on the Pregel model
¨  Uses YARN as back-end (yet another framework)
¨  In-memory

¤ Limitations in terms of partition sizes
¤ Spilling to disk is work in progress

¨  Enables
¤  Iterative data processing
¤ Message passing, aggregators, combiners

GraphLab (Dedicated)

¨  Distributed programming model for machine learning
¤  Provides an API for graph processing, C++ based (now Python)

¨  All in-memory
¨  Supports asynchronous processing
¨  GraphChi is its single-node version,

Dato as GraphLab company

Neo4J (Dedicated)

¨  Very popular graph database
¤ Graphs are represented as relationships and

annotated vertices

¨  Single-node system
¤ Uses parallel processing
¤ Additional caching and query optimizations
¤ All in-memory

¨  The most widely used solutions for medium-scale
problems

PGX.D (Dedicated)

¨  Very fast distributed graph processing system
¤  Beats GraphLab and GraphX by orders of magnitude

¨  Low-overhead communication mechanism
¤  Lightweight cooperative context switching mechansim

¨  Support for data-pulling
¤  Intuitive transformation of classical graph algorithms

¨  Reducing traffic and balancing workloads
¤  Several advanced techniques: Selective Ghostnodes, edge based

partitioning, edge chunking
¨  Justification for beefy clusters

¤  Fully exploits the underlying resources of modern beefy cluster
machines

PGX.D: System Design Overview

Fast Network Connection

M2

Communication
Manager

copier thread

copier thread

copier thread RES RES RES
…

REQ REQ REQ
…

Data
Manager

Task
Manager

Distributed
Property

Graph

Ghostnodes

Local Graph

Graph
Loader Edge-Partitioning

poller thread

worker thread

worker thread

worker thread

M1

Edge
chunking Task Task Task Task Task …

…

PGX.D: Programming Model

Intuitive programming model for Neighborhood Iteration Tasks

class my_task_pull : public innbr_iter_task {
 void run(..) {
 read_remote(get_nbr_id(), bar);
 }
 void read_done(void* buffer,..) {
 int foo_v = get_local<int>(node_id, foo);
 int bar_v= get_data<int>(buffer);
 set_local(node_id, foo_v + bar_v, foo);
 }
}

foreach(n: G.nodes)
 foreach(t: n.Nbrs)
 n.foo += t.bar

gm
compiler

Setup*

¨  Benchmarking-like experiment
¤  6 algorithms:

n  Stats, BFS, PageRank, connected components, community detection,
graph evolution.

¤  7 data-sets
n  From 1.2M to 1.8B edges, various types

¤  7 platforms
¨  Implement all algorithms on all platforms
¨  Run and compare …

¤  Performance

¨  Estimate usability*
*Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella, and T. L. Willke. How Well do

Graph-Processing Platforms Perform? An Empirical Performance Evaluation and
Analysis, IPDPS 2014

Hardware

¨  DAS4: a multi-cluster Dutch grid/cloud
¤  Intel Xeon 2.4 GHz CPU (dual quad-core, 12 MB cache)
¤ Memory 24 GB
¤ 1 Gbit/s Ethernet network

¨  Size
¤ Most experiments take 20 working machines
¤ Up to 50 working machines

¨  HDFS used as distributed file system

Datasets

 The Game Trace Archive

https://snap.stanford.edu/ http://www.graph500.org/ http://gta.st.ewi.tudelft.nl/

TABLE I
SUMMARY OF PERFORMANCE METRICS.

Metric How measured? Derived Relevant aspect (use)

job execution Time the full - Raw processing power

time (T) execution (Figure 1, 3, 4)

Edges per - #E/T Raw processing power

second (EPS) (Figure 2)

Vertices per - #V/T Raw processing power

second (VPS) (Figure 2)

CPU, memory, Monitoring - Resource utilization

network sampled each second (Technical report [32])

Horizontal T of different - Scalability

scalability cluster size (N) (Figure 5)

Vertical T of different - Scalability

scalability cores per node (Figure 6)

Normalized edges - #E/T/N Scalability

per second (NEPS) (Figure 5, 6)

Computation Time actual - Raw processing power

time (Tc) for calculating (Figure 7)

Overhead - T − Tc Overhead

time (To) (Figure 7)

#V and #E are the number of vertices and the number of edges of
graphs, respectively.

B. Selection of graphs and algorithms

This section presents a selection of graphs and algorithms,
which is akin to identifying some of the main functional
requirements of graph-processing systems. We further discuss
the representativeness of our selection in Section V.

1) Graph selection: The main goal of the graph selection
step is to select graphs with different characteristics but with
comparable representation. We use the classic graph formal-
ism [33]: a graph is a collection of vertices V (also called
nodes) and edges E (also called arcs or links) which connect
the vertices. A single edge is described by the two vertices it
connects: e = (u, v). A graph is represented by G = (V,E).
We consider both directed and undirected graphs. We do not
use other graph models (e.g., hypergraphs).

Regarding the graph characteristics, we select graphs with a
variety of values for the number of nodes and edges, and with
different structures (see Table II). We store the graphs in plain
text with a processing-friendly format but without indexes. In
our format, vertices have integers as identifiers. Each vertex
is stored in an individual line, which for undirected graphs,
includes the identifier of the vertex and a comma-separated list
of neighbors; for directed graphs, each vertex line includes the
vertex identifier and two comma-separated lists of neighbors,
corresponding to the incoming and to the outgoing edges.
Thus, we do not consider other data models proposed for
exchanging and using graphs [34], [35] such as complex
plain-text representations, universal data formats (e.g. XML),
relational databases, relationship formalisms (e.g., RDF), etc.

Why these datasets? We select seven graphs which could
match, in scale and diversity, the datasets used by SMEs. Ta-
ble II shows the characteristics of the selected graph datasets2.
The graphs have diverse sources (e-business, social network,
online gaming, citation links, and synthetic graph), and a wide
range of different sizes and graph metrics (e.g. high vs. low

2We extract from each raw graph the largest connected component, so that
the vertices are reachable to each other in these graphs.

TABLE II
SUMMARY OF DATASETS.

Graphs #V #E d D̄ Directivity

G1 Amazon 262,111 1,234,877 1.8 4.7 directed

G2 WikiTalk 2,388,953 5,018,445 0.1 2.1 directed

G3 KGS 293,290 16,558,839 38.5 112.9 undirected

G4 Citation 3,764,117 16,511,742 0.1 4.4 directed

G5 DotaLeague 61,171 50,870,316 2,719.0 1,663.2 undirected

G6 Synth 2,394,536 64,152,015 2.2 53.6 undirected

G7 Friendster 65,608,366 1,806,067,135 0.1 55.1 undirected

d is the link density of the graphs (×10−5). D̄ is the average vertex degree of undirected
graphs and the average vertex in-degree (or average vertex out-degree) of directed graphs.

TABLE III
SUMMARY OF ALGORITHMS.

Algorithm Main features Use

A1 STATS single step, low processing decision-making

A2 BFS iterative, low processing building block

A3 CONN iterative, medium processing building block

A4 CD iterative, medium or high processing social network

A5 EVO iterative (multi-level), high processing prediction

degree, 1,663.2 vs. 2.1, respectively, directed and undirected
graphs, etc.). The synthetic graph (“Synth” in Table II) is
produced by the generator described in Graph500 [29]. The
other graphs have been extracted from real-world use, and have
been shared through the Stanford Network Analysis Project
(SNAP) [36]) and the Game Trace Archive (GTA) [2].

2) Algorithm selection: Why these algorithms? We have
conducted a survey of graph-processing of 10 representative
conferences in recent years over 100 papers (see technical
report [32]). We found that a large variety of graph processing
algorithms exist in practice [37] and are likely used by
SMEs. The algorithms can be categorized into several groups
by functionality, consumption of resources, etc. We focus
on algorithm functionality and select one exemplar of each
of the following five algorithmic classes: general statistics,
graph traversal (used in Graph500), connected components,
community detection, and graph evolution. We describe in the
following the five selected algorithms and summarize their
characteristics in Table III.

The General statistics (STATS) algorithm computes the
number of vertices and edges, and the average of the local
clustering coefficient of all vertices. The results obtained with
STATS can provide the graph analyst with an overview of the
structure of the graph.

Breadth-first search (BFS) is a widely used algorithm in
graph processing, which is often a building block for more
complex algorithms, such as item search, distance calculation,
diameter calculation, shortest path, longest path, etc. BFS
allows us to understand how the tested platforms cope with
lightweight iterative jobs.

Connected Component (CONN) is an algorithm for extract-
ing groups of vertices that can reach each other via graph
edges. This algorithm produces a large amount of output, as
in many graphs the largest connected component includes a
majority of the vertices.

Community detection (CD) is important for social network
applications, as users of these networks tends to form com-
munities, that is, groups whose constituent nodes form more

Graph-Processing Algorithms

¨  Literature survey
¤ 10 top research conferences: SIGMOD, VLDB, HPDC …
¤ 2009–2013, 124 articles

Class	
� Examples	
� %	
�
Graph Statistics	
� Diameter, PageRank 16.1	
�

Graph Traversal	
� BFS, SSSP, DFS	
� 46.3	
�

Connected Component	
� Reachability, BiCC 13.4	
�

Community Detection	
� Clustering, Nearest Neighbor 5.4	
�

Graph Evolution	
� Forest Fire Model, PAM 4.0	
�

Other	
� Sampling, Partitioning 14.8	
�

BFS:
Results for all-2-all

in Section III, using the process and metrics, and the datasets
and algorithms introduced in Section II. The complete results
are available through our technical report [33]. Compared with
the previous work (Section VI), our experiments show more
comprehensive and quantitative results in diverse performance
metrics.
The experiments we have performed are:
• Basic performance (Section IV-A): we have measured
the job execution time on a fixed infrastructure. Based
on these execution times, we further report throughput
numbers, using the edges per second (EPS) and vertices
per second (VPS) metrics.

• Resource utilization (Section IV-B): we have investigated
the CPU utilization, memory usage, and network traffic.
We report them for both the master and computing nodes
on the distributed platforms.

• Scalability (Section IV-C): we have measured the hori-
zontal and vertical scalability of the platforms; we report
the execution time and the normalized edges per second
(NEPS) for interesting datasets.

• Overhead (Section IV-D): we have analyzed the execution
time in detail, and report important findings related to the
platform overhead.

A. Basic performance: job execution time
The fixed infrastructure we use for our basic performance

measurements is a cluster of 20 homogeneous computing
nodes provisioned from DAS4. With the configuration in [33],
each node is restricted at using a single core for computing.
We configure the cluster as follows. For the experiments on
Hadoop and YARN, we run 20 map tasks and 20 reduce
tasks on the 20 computing nodes. Due to the settings used for
Hadoop [33], the map phase will be completed in one wave;
all the reduce tasks can also be finished in one wave, without
any overlap with the map phase [40]. In Giraph, Stratosphere,
and GraphLab, we set the parallelization degree to 20 tasks,
also equal to the total number of computing nodes.
With these settings, we run the complete set of experiments

(6 platforms, 5 different applications, and 7 datasets) and
measure the execution time for each combination. In the
remainder of this section, we present a selection of our results.
Key findings:
• There is no overall winner, but Hadoop is the worst
performer in all cases.

• Multi-iteration algorithms suffer for additional perfor-
mance penalties in Hadoop and YARN.

• EPS and VPS are suitable metrics for comparing the
platforms throughput.

• The performance of all the platforms is stable, with the
largest variance around 10%.

• Several of the platforms are unable to process all datasets
for all algorithms, and crash.

1) Results for one selected algorithm: We present here
the results obtained for one selected algorithm, BFS (see
Section II-B2).

TABLE V
STATISTICS OF BFS.

G1 G2 G3 G4 G5 G6 G7
Coverage [%] 99.9 98.5 100 0.1 100 100 100
Iterations 68 8 9 11 6 8 23

100

101

102

103

104

Amazon
WikiTalk

KGS Citation
DotaLeague

Synth
Friendster

1 min

15 mins

1 hour

Ex
ec

ut
io

n
tim

e
[s

]

Datasets

Giraph
Stratosphere

Hadoop

YARN
GraphLab

Neo4j

Fig. 1. The execution time of algorithm BFS of all datasets of all platforms.

Because the starting node for the BFS traversal will impact
performance by limiting the coverage and number of itera-
tions of the algorithm, we summarize in Table V the vertex
coverage and iteration count observed for the BFS experiments
presented in this section. Overall, BFS covers over 98% of the
vertices, with the exception of the Citation (G4) dataset. The
iteration count depends on the structure of each graph and
varies between 6 and 68; we expect higher values to impact
negatively the performance of Hadoop.
We depict the performance of the BFS graph traversal in

Figure 1 and discuss in the following the main findings.
Similarly to most figures in this section, Figure 1 has a
logarithmic vertical scale.
Hadoop always performs worse than the other platforms,

mainly because Hadoop has a significant I/O between two
continuous iterations (see Section III). In these experiments,
Hadoop does not use spills, so it has no significant I/O within
the iteration. As expected, the I/O overhead of Hadoop is
worse when the number of BFS iterations increases. For exam-
ple, although Amazon is the smallest graph in our study, it has
the largest iteration count, which leads to a very long execution
time. YARN performs only slightly better than Hadoop—it has
not been altered to support iterative applications. Although
Stratosphere is also a generic data-processing platform, it
performs much better than Hadoop and YARN (up to an
order of magnitude lower execution time). We attribute this
to Stratosphere’s ability to optimize the execution plan based
on code annotations regarding data sizes and flows, and to the
much more efficient use of the network channel.
In contrast to the generic platforms, for Giraph and

GraphLab the input graphs are read only once, and then
stored and processed in-memory. Both Giraph and GraphLab
realize a dynamic computation mechanism, by which only
selected vertices will be processed in each iteration. This
mechanism reduces the actual computing time for BFS, in
comparison with the other platforms (more details are dis-
cussed in Section IV-D). In addition, GraphLab also addresses

No platform runs fastest for all graphs, but Hadoop is the worst performer.
Not all platforms can process all graphs, but Hadoop processes everything.

Giraph:
Results for (algo*,platform*)

Storing the whole graph in memory helps Giraph perform well
Giraph may crash when graphs or number of messages large

Horizontal scalability:
BFS on Friendster (31 GB)

Using more computing machines can reduce execution time
Tuning needed for horizontal scalability, e.g., for GraphLab, split large
input files into number of chunks equal to the number of machines

Overhead (BFS, DotaLeague)

We need new metrics, to capture meaning of computation time (more later)
In some systems, overhead is by and large wasted time (e.g., in Hadoop)

Additional Overheads
Data ingestion time

¨  Data ingestion
¤ Batch system: one ingestion, multiple processing
¤ Transactional system: one ingestion, one processing

¨  Data ingestion matters even for batch systems
Amazon	
� DotaLeague	
� Friendster	
�

HDFS	
� 1 second	
� 7 seconds	
� 5 minutes	
�

Neo4J	
� 4 hours	
� days	
� n/a	
�

Productivity

¨  Low throughput in terms of LOC for all models
¨  Days to hours development time for the simpler

applications

We need better productivity metrics!

PGX.D: Performance Evaluation
(PageRank, Twitter, Infiniband)

0

5

10

15

20

25

2 4 8 16 32

2
M

ac
hi

ne
s

G
ra

ph
La

b
is

ba
se

lin
e

Number of Machines

PGX.D

GraphLab

GraphX

Single Machine Re
la

tiv
e

Pe
rf

or
m

an
ce

Lessons learned*

¨  Performance is function of
(Dataset, Algorithm, Platform, Deployment)
¤  Previous performance studies may lead to tunnel vision

¨  Platforms have their own drawbacks
(crashes, long execution time, tuning, etc.)
¤  Best-performing is not only low response time
¤  Ease-of-use of a platform is very important

¨  Some platforms can scale up reasonably with cluster
size (horizontally) or number of cores (vertically)
¤  Strong vs weak scaling still a challenge

n  workload scaling tricky

*All results and details:
http://www.pds.ewi.tudelft.nl/fileadmin/pds/reports/2013/PDS-2013-004-4.pdf

Such manual evaluation is never comprehensive or scalable …
Adding PGX.D by hand would take 4-5 weeks!

There are 20+ other interesting platforms …
Can we do better than manual ?

From single- to many- (to all ?) evaluations
A systematic approach

Methodology

Graph Processing Platforms	
�

¨  Platform: the combined hardware, software, and
programming system that is being used to complete
a graph processing task.

Trinity

Which to choose?
What to tune?

Abstraction	
�

A Graph Processing Platform	
�

Algorithm ETL

Active Storage
(filtering, compression,
replication, caching)

Distribution
to processing

platform

Objectives: scalability & peformance	
�

A Graph Processing Platform	
�

Algorithm ETL

Active Storage
(filtering, compression,
replication, caching)

Distribution
to processing

platform
Ideally,

N cores/disks à
Nx faster

Ideally,
N cores/disks à

Nx faster

Evaluating graph-processing platforms

90

•  Graph500
•  Single application (BFS), Single class of synthetic datasets

•  Few existing platform-centric comparative studies
•  Prove the superiority of a given system, limited set of metrics

•  GreenGraph500, GraphBench, XGDBench
•  Representativeness, systems covered, metrics, …

Metrics
Diversity	
�

Graph
Diversity	
�

Algorithm
Diversity	
�

Graphalytics:
A Challenging Benchmarking Process

¨  Methodological challenges
¤  Challenge 1. Evaluation process

¤  Challenge 2. Selection and design of performance metrics
¤  Challenge 3. Dataset selection and analysis of coverage

¤  Challenge 4. Algorithm selection and analysis of coverage

¨  Practical challenges
¤  Challenge 5. Scalability of evaluation, selection processes
¤  Challenge 6. Portability

¤  Challenge 7. Result reporting

Y. Guo, A. L. Varbanescu, A. Iosup, C. Martella, T. L. Willke:
Benchmarking graph-processing platforms: a vision.
ICPE 2014: 289-292

Graphalytics

Graphalytics:
Many Classes of Algorithms

Literature survey of metrics, datasets, and algorithms
¤  All 124 articles in 10 top research conferences: SIGMOD, VLDB, HPDC …

(2009–2013)

Class	
� Examples	
� %	
�
Graph Statistics	
� Diameter, PageRank 16.1	
�

Graph Traversal	
� BFS, SSSP, DFS	
� 46.3	
�

Connected Component	
� Reachability, BiCC 13.4	
�

Community Detection	
� Clustering, Nearest Neighbor 5.4	
�

Graph Evolution	
� Forest Fire Model, PAM 4.0	
�

Other	
� Sampling, Partitioning 14.8	
�

Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella, and T.
L. Willke. How Well do Graph-Processing Platforms Perform? An
Empirical Performance Evaluation and Analysis, IPDPS’14.

Future work

TABLE I
SUMMARY OF PERFORMANCE METRICS.

Metric How measured? Derived Relevant aspect (use)

job execution Time the full - Raw processing power

time (T) execution (Figure 1, 3, 4)

Edges per - #E/T Raw processing power

second (EPS) (Figure 2)

Vertices per - #V/T Raw processing power

second (VPS) (Figure 2)

CPU, memory, Monitoring - Resource utilization

network sampled each second (Technical report [32])

Horizontal T of different - Scalability

scalability cluster size (N) (Figure 5)

Vertical T of different - Scalability

scalability cores per node (Figure 6)

Normalized edges - #E/T/N Scalability

per second (NEPS) (Figure 5, 6)

Computation Time actual - Raw processing power

time (Tc) for calculating (Figure 7)

Overhead - T − Tc Overhead

time (To) (Figure 7)

#V and #E are the number of vertices and the number of edges of
graphs, respectively.

B. Selection of graphs and algorithms

This section presents a selection of graphs and algorithms,
which is akin to identifying some of the main functional
requirements of graph-processing systems. We further discuss
the representativeness of our selection in Section V.

1) Graph selection: The main goal of the graph selection
step is to select graphs with different characteristics but with
comparable representation. We use the classic graph formal-
ism [33]: a graph is a collection of vertices V (also called
nodes) and edges E (also called arcs or links) which connect
the vertices. A single edge is described by the two vertices it
connects: e = (u, v). A graph is represented by G = (V,E).
We consider both directed and undirected graphs. We do not
use other graph models (e.g., hypergraphs).

Regarding the graph characteristics, we select graphs with a
variety of values for the number of nodes and edges, and with
different structures (see Table II). We store the graphs in plain
text with a processing-friendly format but without indexes. In
our format, vertices have integers as identifiers. Each vertex
is stored in an individual line, which for undirected graphs,
includes the identifier of the vertex and a comma-separated list
of neighbors; for directed graphs, each vertex line includes the
vertex identifier and two comma-separated lists of neighbors,
corresponding to the incoming and to the outgoing edges.
Thus, we do not consider other data models proposed for
exchanging and using graphs [34], [35] such as complex
plain-text representations, universal data formats (e.g. XML),
relational databases, relationship formalisms (e.g., RDF), etc.

Why these datasets? We select seven graphs which could
match, in scale and diversity, the datasets used by SMEs. Ta-
ble II shows the characteristics of the selected graph datasets2.
The graphs have diverse sources (e-business, social network,
online gaming, citation links, and synthetic graph), and a wide
range of different sizes and graph metrics (e.g. high vs. low

2We extract from each raw graph the largest connected component, so that
the vertices are reachable to each other in these graphs.

TABLE II
SUMMARY OF DATASETS.

Graphs #V #E d D̄ Directivity

G1 Amazon 262,111 1,234,877 1.8 4.7 directed

G2 WikiTalk 2,388,953 5,018,445 0.1 2.1 directed

G3 KGS 293,290 16,558,839 38.5 112.9 undirected

G4 Citation 3,764,117 16,511,742 0.1 4.4 directed

G5 DotaLeague 61,171 50,870,316 2,719.0 1,663.2 undirected

G6 Synth 2,394,536 64,152,015 2.2 53.6 undirected

G7 Friendster 65,608,366 1,806,067,135 0.1 55.1 undirected

d is the link density of the graphs (×10−5). D̄ is the average vertex degree of undirected
graphs and the average vertex in-degree (or average vertex out-degree) of directed graphs.

TABLE III
SUMMARY OF ALGORITHMS.

Algorithm Main features Use

A1 STATS single step, low processing decision-making

A2 BFS iterative, low processing building block

A3 CONN iterative, medium processing building block

A4 CD iterative, medium or high processing social network

A5 EVO iterative (multi-level), high processing prediction

degree, 1,663.2 vs. 2.1, respectively, directed and undirected
graphs, etc.). The synthetic graph (“Synth” in Table II) is
produced by the generator described in Graph500 [29]. The
other graphs have been extracted from real-world use, and have
been shared through the Stanford Network Analysis Project
(SNAP) [36]) and the Game Trace Archive (GTA) [2].

2) Algorithm selection: Why these algorithms? We have
conducted a survey of graph-processing of 10 representative
conferences in recent years over 100 papers (see technical
report [32]). We found that a large variety of graph processing
algorithms exist in practice [37] and are likely used by
SMEs. The algorithms can be categorized into several groups
by functionality, consumption of resources, etc. We focus
on algorithm functionality and select one exemplar of each
of the following five algorithmic classes: general statistics,
graph traversal (used in Graph500), connected components,
community detection, and graph evolution. We describe in the
following the five selected algorithms and summarize their
characteristics in Table III.

The General statistics (STATS) algorithm computes the
number of vertices and edges, and the average of the local
clustering coefficient of all vertices. The results obtained with
STATS can provide the graph analyst with an overview of the
structure of the graph.

Breadth-first search (BFS) is a widely used algorithm in
graph processing, which is often a building block for more
complex algorithms, such as item search, distance calculation,
diameter calculation, shortest path, longest path, etc. BFS
allows us to understand how the tested platforms cope with
lightweight iterative jobs.

Connected Component (CONN) is an algorithm for extract-
ing groups of vertices that can reach each other via graph
edges. This algorithm produces a large amount of output, as
in many graphs the largest connected component includes a
majority of the vertices.

Community detection (CD) is important for social network
applications, as users of these networks tends to form com-
munities, that is, groups whose constituent nodes form more

Graphalytics:
Real & Synthetic Datasets

 The Game Trace Archive

https://snap.stanford.edu/ http://www.graph500.org/ http://gta.st.ewi.tudelft.nl/

Y. Guo and A. Iosup. The Game Trace Archive, NETGAMES 2012.

Interaction graphs
(possible work)

LDBC

Social Network

Generator

Graphalytics:
Enhanced LDBC Datagen

¨  A battery of graphs covering
a rich set of configurations

¨  Datagen extensions to
¤ More diverse degree distributions
¤ Clustering coefficient and

assortativity

LDBC D3.3.34
http://ldbcouncil.org/sites/default/files/LDBC_D3.3.34.pdf
Orri Erling et al. The LDBC Social Network Benchmark:
Interactive Workload, SIGMOD’15

Ongoing work

Graphalytics:
Metrics of interest
¨  Raw processing power

¤  Execution time
¤  Actual computation time
¤  Normalized Edges/Vertices per second

¨  Resource utilization
¤  CPU, memory, network

¨  Scalability
¤  Horizontal vs. vertical
¤  Strong (fixed work) vs. weak (scaled work)

¨  Overhead
¤  Data ingestion time
¤  Other overheads

¨  Cost?
Y. Guo, A. L. Varbanescu, A. Iosup, C. Martella, T. L. Willke:
Benchmarking graph-processing platforms: a vision.
ICPE 2014: 289-292

Graphalytics:
Monitoring & Logging

¨  Automatic
analysis
matching the
programming
model

Time D
iv

er
se

 m
et

ric
s:

C
PU

, I
O

PS
, N

et
w

or
k,

 M
em

or
y

us
e,

 …

Ongoing work

A. Iosup et al., Towards Benchmarking IaaS and PaaS Clouds for Graph Analytics. WBDB 2014

Graphalytics:
Choke-Point Analysis

¨  Choke points are crucial technological
challenges that platforms are struggling with

¨  Examples
¤ Network traffic
¤ Access locality
¤  Skewed execution

¨  Challenge: Select benchmark workload based on
real-world scenarios, but make sure they cover the
important choke points

near-future work

Graphalytics:
Advanced Software Engineering Process

¨  All significant modifications to Graphalytics are
peer-reviewed by developers
¤  Internal release to LDBC partners (Feb 2015)

¤  Public release, announced first through LDBC (Apr 2015*)

¨  Jenkins continuous integration server
¨  SonarQube software quality analyzer

 https://github.com/mihaic/graphalytics/

Graphalytics:
Results easy to read/interpret

¨  Missing results = failures of the respective systems
5 classes of algorithms

10 platforms tested w prototype implementation

Many more metrics supported

Data ingestion not included here!

6 real-world datasets +
2 synthetic generators

Graphalytics in practice

The hour of benchmarking

Schedule

¨  Benchmarking with Graphalytics
¤ Get to know the system: step-by-step tutorial

n Simple example (TBA)

¤ Team-work
n A real-life problem (TBA)

¨  BONUS: Fine-grained in-depth analysis with
Granula
¤ Step-by-step tutorial

n An example (TBA)

Open discussion

Discussion 1

¨  How much preprocessing should we allow in the ETL
phase?

¨  How to choose a metric that captures the
preprocessing?

Algorithm ETL

Active Storage
(filtering, compression,
replication, caching)

Distribution
to processing

platform

Graph Processing	
�

Discussion 2

¨  Trade-off between fast dataset submission (reads
from the database or full-scale generation) and cost
(of storage, of computation).

Discussion 3

¨  Should we allow platform-specific algorithms or
only implementations of exhaustively defined
algorithms?

Discussion 4

¨  How should we asses the correctness of algorithms
that produce approximate results?

Discussion 5

¨  How to setup the platforms? Should we allow
algorithm-specific platform setups or should we
require only one setup to be used for all
algorithms?

} Provide a platform for collaborative research efforts in
the areas of computer benchmarking and quantitative
system analysis
} Provide metrics, tools and benchmarks for evaluating
early prototypes and research results as well as full-
blown implementations
} Foster interactions and collaborations btw. industry and
academia

Mission Statement

The Research Group of the
Standard Performance Evaluation Corporation

SPEC Research Group (RG)

Find more information on: http://research.spec.org

Take home message

Summary

¨  Graph processing is a hot topic for both software
and hardware developers

¨  Challenges in scale and irregularity
¨  Existing platforms: over 80!
¨  Choose which one to use

¤ Quick: pick a platform where your graph fits and you
can program.

¤ Graphalytics: use systematic benchmarking

Find us online: graphalytics.ewi.tudelft.nl

