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270M MAU 
200+ avg followers 

>54B edges 

1.2B MAU 0.8B DAU 
200+ avg followers 

>240B edges 

300M users 

??? edges 
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1.2B MAU 0.8B DAU 
200+ avg followers 

>240B edges 

company/day:  
40-60 posts, 500-700 comments 

Compute-intesive workload 
more complex analysis è ?x slower 

Dataset-dependent workload 
unfriendly graphs è ??x slower 

         Oracle 1.2M followers, 
                   132k employees 

Data-intesive workload 
10x graph size è 100x—1,000x slower 



Graphs at the Core of Our Society:  
The LinkedIn Example 
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Feb 2012 

100M Mar 2011, 69M May 2010 Sources: Vincenzo Cosenza, The State of LinkedIn, http://vincos.it/the-state-of-linkedin/ 
via Christopher Penn, http://www.shiftcomm.com/2014/02/state-linkedin-social-media-dark-horse/    

A very good resource for matchmaking workforce 
and prospective employers 

Vital for your company’s life,  
as your Head of HR would tell you 

Vital for the prospective employees 
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Apr 2014 
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Periodic and/or 
continuous analytics 

at full scale 







 

The “sorry, but…” moment 



 

The “sorry, but…” moment 

Supporting multiple users 
10x number of users è ????x slower 



In this talk …  

¨  Graphalytics = Graph analytics 
¨  Analytics = any form of graph processing  
¨  Platform = hardware and/or software we can tune 

and change as a whole 
¨  (Graph) Processing system = computing system that 

includes one or more platforms (for graph processing) 
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Synthetic graph generation 
 

LDBC Social Network Benchmark (SNB) 



Why a synthetic graph generator? 
21 

¨  Real graphs are sometimes difficult to obtain 
n Not practical to distribute TeraBytes of data 
n Privacy concerns 

¨  Real data do not always have the desired 
characteristics 

n Many dimensions to be tested (size, distributions, structural 
characteristics, etc.) as they can affect the performance of 
the tested systems 

n Difficult to obtain real data for all the desired dimension 
combinations 



Generator’s features (wish list) 
22 

¨  Scalable  
¤  From GigaBytes to TeraBytes of data 

¨  Realistic 
¤ Distributions: attributes, degrees, etc.  
¤ Correlations: attributes, edges, etc. 
¤  Structural characteristics: clustering coefficient, largest 

connected component, diameter, etc. 

¨  Flexible 
¤ Allow choosing the characteristics of the generated data 
¤  Support different output formats 



LDBC DATAGEN 
23 

¨  DATAGEN is a fork of S3G2[1] 
¨  Developed during LDBC European Project as the 

data generator for the LDBC Social Network 
Benchmark Workloads 

¨  Available at: 
https://github.com/ldbc/ldbc_snb_datagen 

 

[1] Pham, Minh-Duc, Peter Boncz, and Orri Erling. "S3g2: A scalable structure-correlated social 
graph generator." Selected Topics in Performance Evaluation and Benchmarking. Springer Berlin 
Heidelberg, 2013. 156-172. 



LDBC DATAGEN 
24 

¨  Generates a Social Network graph 
¤ Uses dictionaries extracted from Dbpedia to populate 

the dataset with realistic attributes 
n e.g. Person names, countries, companies, tags (interests) 

¤ Correlated attributes 
n e.g. Person names with countries, correlations between tags, 

etc.  
¤ Realistic distributions 

n Facebook-like degree distribution, attribute distributions etc. 
¤ Event-based user activity generation 

n Mimick spikes of activity around specific events 



LDBC DATAGEN 
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¨  Built on top of Hadoop  
¤ Able to generate Terabytes of data with a small 

commodity cluster 
¤ Billion edge graphs in few hours 

¨  Deterministic 



LDBC DATAGEN 
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¨  Continuously evolving towards a more flexible data 
generator  
¤ Support for different degree distributions: Zipf, 

MOEZipf, Geometric, Discrete Weibull, etc. 
¤ Able to tune structural characteristics of the network 

(e.g. clustering coefficient, assortativity, etc.) 
¤ Custom data serializers 
¤ A more flexible schema definition 
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Person Generation 

¨  A 4-machine cluster 
¨  100,000 Person network 
¨  Block size m= 10,000 => 10 blocks in total 

Block n 

DBpedia 
dictionaries 

Random number 
generators Degree sequence 

generator 

P0 P1 P2 … Pm-1 

Each block has its 
own independent 
state, which depends 
only on the block id. 
This guarantees 
determinism. 

Block 0 

Block 1 

Block 2 

Block 3 

Block 4 

Block 5 

Block 6 

Block 7 

Block 8 

Block 9 

Node 0 

Node 1 

Node 2 

Node 3 

map/reduce 

Persons.file 
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Edge Generation 

Edge 
Generation 

Substep 
(Main 

Interest) 

Edge 
Generation 

Substep 
(University-age-

gender) 

Edge 
Generation 

Substep 
(Random) 

Edges 
Merge 
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One substep for each 
correlation dimension 



Edge Generation Substep 

Parallel sort 
and rank Block 0 

Block 1 

Block 2 

Block 3 

Block 4 

Block 5 

Block 6 

Block 7 

Block 8 

Block 9 

Edge 
generation 
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Persons.file Persons.file.sorted Edge.file.n 



Edge Generation Substep 

Parallel sort 
and rank 

¨  Sort by correlation dimension: 
¤  e.g. Main interest, University-age, 

random 

¨  Set Person keys as their position in 
the sorted array (between 0 and 
N-1) 

33 

Block 0 

Block 1 

Block 2 

Block 3 

Block 4 

Block 5 

Block 6 

Block 7 

Block 8 

Block 9 

Edge 
generation 

Persons.file Persons.file.sorted Edge.file.n 



Edge Generation Substep 

Parallel sort 
and rank 

Persons.file Persons.file.sorted Edge.file.n 
Independent 
state 

P0 P1 P2 Pm-1 

Block n 

o  The probability of creating an edge 
decreases geometrically with the distance 

o  Persons with similar characteristics (close 
in the sorted array) are more likely to be 
connected, producing a correlated graph 

o  The amount of edge a person can create 
depends on its assigned target degree  
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Block 0 

Block 1 

Block 2 

Block 3 

Block 4 

Block 5 

Block 6 

Block 7 

Block 8 

Block 9 

Edge 
generation 



Edge Merge 

Merge edges Edges.file.0 

Edges.file.1 

Edges.file.2 
To eliminate duplicate edges 
between the same pair of Persons 
 

Persons.Edges.file 
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Knows graph serialization 

¨  Finally, Persons.Edges.file is read and serialized into 
HDFS using a configurable serializer. 

¨  Serializers implement ldbc.snb.datagen.serializer* 
interfaces  
¤ To write to HDFS 
¤ To directly bulk load data into the Database System 

¨  Provided CSV serializers 
¤ Can output compressed files 

36 



Performance snapshot 
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¨  Cluster with four nodes:  
¤  Intel Xeon E5530 @ 2.4 Ghz (4 cores, Year 2010) 
¤ 32Gb of RAM 
¤ 7200 rpm spinning disks 
¤ 1 master, 3 slaves 
¤ 12 reducers in total 
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Scale Factors 

¨  Provided Scale Factors for LDBC SNB Interactive 
and Graphalytics 

¨  Scale factors are just configuration presets of 
DATAGEN 

Scale Factor #Persons #Edges 

Graphalytics.10 235,000 10,000,000 

Graphalytics.30 592,500 30,000,000 

Graphalytics.100 1,167,000 100,000,000 

Graphalytics.300 4,350,000 300,000,000 

Graphalytics.1000 12,750,000 1,000,000,000 

Graphalytics.3000 32,500,000 3,000,000,000 



Final remarks 

¨  The generated Graph is structurally correlated 
¤  Persons tend to be connected with similar people 

¨  Characteristics typical from real social networks 
¤  6-degrees of separation, large connected component, 

moderately large clustering coefficient, skewed distribution 

¨  Very good scalability: current experiments show linear 
scalability 

¨  Rapidly evolving to support new features such as tuning 
structural properties of the graph, or being able to 
change the generated schema 



Questions? 

¨  References: 
¤ Erling, Orri, et al. "The LDBC Social Network 

Benchmark: Interactive Workload." Proceedings of the 
2015 ACM SIGMOD International Conference on 
Management of Data. ACM, 2015. 

¤ Capota, M., Hegeman, T., Iosup, A., Prat-Pérez, A., 
Erling, O., & Boncz, P. (2015). Graphalytics: A Big Data 
Benchmark for Graph-Processing Platforms. 
n http://ldbcouncil.org/sites/default/files/LDBC_D2.2.2.pdf 
n http://ldbcouncil.org/sites/default/files/LDBC_D3.3.34.pdf 
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Systems and models  



Graph processing @ scale 

¨  The characteristics of graph processing 
¤ Poor locality  
¤ Unstructured computation  
¤ Variable parallelism  
¤ Low computer-to-memory ratio 

¨  @ Scale  
¤ Distributed processing is mandatory  
¤ Parallel processing is very useful 

Implementing graph applications is already difficult. Dealing with large 
scale systems on top (below, in fact) them is even harder. 



Graph processing systems  

¨  Provide simplified ways to develop graph processing 
applications 
¤  Typical scenario: analytics on single- or multi-node platfoms 
¤ Heterogeneity is becoming popular 

  

¨  Target *productivity* and *performance*  
¤  Productivity => ease-of-implementation, development time 
¤  Performance => optimized back-ends / engines /runtimes 
¤  Portability comes “for free” 

  

¨  Both commercial and academic, many open-source 



Graph processing systems 

Custom 

            Generic 

 
Dedicated  
Systems 

•  Specify application 

•  Choose the hardware  

•  Implement & optimize 

•  Think Graph500 

•  Use existing large scale 

distributed systems  

•  Mapping is difficult 

•  Parallelism is “free” 

•  Think MapReduce  

•  Systems for graph processing  

•  Separate users from backends 

•  Think Totem, Medusa, .... 

•  Think Giraph, GraphLab, PGX   

Performance 

Development  
Effort 



GPU-enabled dedicated systems  



Platforms we have evaluated  

¨  Accelerated, Dedicated 
¤ Medusa  
¤ Totem   
¤ MapGraph 

¨  In progress…  
¤ Ligra 
¤ Gunrock  

 



Medusa 

¨  Enables the use of GPUs for graph processing  
¤ Single-node, multiple GPUs 
¤  In-memory processing  

¨  Simple API that hides GPU programming  
¤ Edge- / vertex-granularity that enables fine-grained 

parallelism. 
¤ API calls are grouped in kernels  
¤ Kernels are scheduled on one or multiple GPUs 

¨  Run-time for communicating with the GPU 



Totem  

¨  Enables *single-node* heterogeneous computing on graphs 
¤  C+CUDA+API for specifying applications  
¤  Based on BSP 

¨  Partitions the data (edge-based) between CPUs and GPUs 
¤  Based on processing capacity  
¤  Minimizing the overhead of communication  

n  Buffer schemes, aggregation, smart partitioning 

¨  Shows promising performance  
¤  BFS 
¤  PageRank 
¤  Betweenness centrality  



MapGraph 

¨  Target at high performance graph analytics on 
GPUs.  

¨  API based on the Gather-Apply-Scatter (GAS) 
model as used in GraphLab.  
¤ Productivity-oriented API  

¨  Single GPU available and Multi-GPU ready  
¤ Also available in a CPU-only version 

 



Evaluation setup 

¨  Use GPU-enabled graph platforms to compare 
their performance*  

¨  Datasets: 
¤ SNAP repository 
¤ Graph500 generated benchmarks  

n Scale-22/Synth  

¨  Algorithms  
¤ BFS (traversal) 
¤ PageRank  
¤ Weakly connected components  

*Accepted in CCGrid’15,  
Y.Guo et. al: “” 
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Lessons learned 

¨  Brave attempts to enable the use of GPUs *inside* 
graph processing systems 

¨  Every system has its own quirks  
¤ Lower level programming allows more optimizations, 

better performance 
¤ Higher level APIs allow more productivity  

¨  No clear winner, performance-wise 

 



Distributed/Large Scale platforms 



Interesting platforms 

¨  Distributed or non-distributed 
¨  Dedicated or generic 

YARN 

Non-distributed 
(Dedicated) 
 

Distributed (Generic) 
Distributed  
(Dedicated) 



Hadoop (Generic) 

¨  The most popular MapReduce implementation 
¤ Generic system for large-scale computation  

¨  Pros:  
¤ Easy to understand model  
¤ Multitude of tools and storage systems  

¨  Cons:  
¤ Express the graph application in the form of 

MapReduce  
¤ Costly disk and network operations  
¤ No specific graph processing optimizations  



Hadoop2 with YARN (Generic) 

¨  Next generation of Hadoop 
¤ Supports old MapReduce jobs 
¤ Designed to facilitate multiple programming models 

(frameworks, e.g., Spark) 

¨  Separates resource management (YARN) and  
job management 
¤ MapReduce manages jobs using resources provided by 

YARN 



Stratosphere (Generic) 

¨  Now Apache Flink  
¨  Nephele resource manager  

¤ Scalable parallel engine  
¤ Jobs are represented as DAGs  
¤ Supports data flow in-memory, via network, or on files 

¨  PACT job model 
¤ 5 second-order functions (MapReduce has 2):  

Map, Reduce, Match, Cross, and CogGroup  
¤ Code annotations for compile-time plans  
¤ Compiled as DAGs for Nephele  



Pregel: dedicated graph-processing 
model 
¨  Proposed a vertex-centric approach to graph processing 

¤  Graph-to-graph transformations  
¨  Front-end:  

¤  Write the computation that runs on all vertices  
¤  Each vertex can vote to halt  

n  All vertexes halt => terminate 
¤  Can add/remove edges and vertices  

¨  Back-end: 
¤  Uses the BSP model  
¤  Message passing between nodes  

n  Combiners, aggregators 
¤  Checkpointing for fault-tolerance  



Pregel  



Pregel 



Apache Giraph (Dedicated)  

¨  Based on the Pregel model  
¨  Uses YARN as back-end (yet another framework) 
¨  In-memory  

¤ Limitations in terms of partition sizes 
¤ Spilling to disk is work in progress 

¨  Enables  
¤  Iterative data processing 
¤ Message passing, aggregators, combiners  



GraphLab (Dedicated) 

¨  Distributed programming model for machine learning 
¤  Provides an API for graph processing, C++ based (now Python) 

¨  All in-memory 
¨  Supports asynchronous processing  
¨  GraphChi is its single-node version, 

Dato as GraphLab company  



Neo4J (Dedicated) 

¨  Very popular graph database  
¤ Graphs are represented as relationships and 

annotated vertices  

¨  Single-node system  
¤ Uses parallel processing  
¤ Additional caching and query optimizations  
¤ All in-memory  

¨  The most widely used solutions for medium-scale 
problems  



PGX.D (Dedicated)  

¨  Very fast distributed graph processing system 
¤  Beats GraphLab and GraphX by orders of magnitude 

¨  Low-overhead communication mechanism 
¤  Lightweight cooperative context switching mechansim 

¨  Support for data-pulling 
¤  Intuitive transformation of classical graph algorithms 

¨  Reducing traffic and balancing workloads 
¤  Several advanced techniques: Selective Ghostnodes, edge based 

partitioning, edge chunking 
¨  Justification for beefy clusters 

¤  Fully exploits the underlying resources of modern beefy cluster 
machines 



PGX.D: System Design Overview 

Fast Network Connection 

M2 

Communication 
Manager 

copier thread 

copier thread 

copier thread RES RES RES 
… 

REQ REQ REQ 
… 

Data 
Manager 

Task 
Manager 

Distributed 
Property 

Graph 

Ghostnodes 

Local Graph 

Graph 
Loader Edge-Partitioning 

poller thread 

worker thread 

worker thread 

worker thread 

M1                       

Edge 
chunking Task Task Task Task Task … 

… 



PGX.D: Programming Model 

Intuitive programming model for Neighborhood Iteration Tasks 

 
class my_task_pull : public innbr_iter_task { 
  void run(..) { 
    read_remote(get_nbr_id(), bar); 
  } 
  void read_done(void* buffer,..) { 
    int foo_v = get_local<int>(node_id, foo); 
    int bar_v= get_data<int>(buffer); 
    set_local(node_id, foo_v + bar_v, foo); 
  } 
} 

foreach(n: G.nodes) 
    foreach(t: n.Nbrs) 
        n.foo += t.bar 

gm 
compiler 



Setup* 

¨  Benchmarking-like experiment  
¤  6 algorithms:  

n  Stats, BFS, PageRank, connected components, community detection, 
graph evolution.   

¤  7 data-sets  
n  From 1.2M to 1.8B edges, various types  

¤  7 platforms  
¨  Implement all algorithms on all platforms  
¨  Run and compare …  

¤  Performance  

¨  Estimate usability*  
*Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella, and T. L. Willke. How Well do 

Graph-Processing Platforms Perform? An Empirical Performance Evaluation and 
Analysis, IPDPS 2014 



Hardware 

¨  DAS4: a multi-cluster Dutch grid/cloud 
¤  Intel Xeon 2.4 GHz CPU (dual quad-core, 12 MB cache) 
¤ Memory 24 GB 
¤ 1 Gbit/s Ethernet network 

¨  Size 
¤ Most experiments take 20 working machines 
¤ Up to 50 working machines 

¨  HDFS used as distributed file system 



Datasets 

 
 The Game Trace Archive 

 

https://snap.stanford.edu/ http://www.graph500.org/ http://gta.st.ewi.tudelft.nl/ 

TABLE I
SUMMARY OF PERFORMANCE METRICS.

Metric How measured? Derived Relevant aspect (use)

job execution Time the full - Raw processing power

time (T ) execution (Figure 1, 3, 4)

Edges per - #E/T Raw processing power

second (EPS) (Figure 2)

Vertices per - #V/T Raw processing power

second (VPS) (Figure 2)

CPU, memory, Monitoring - Resource utilization

network sampled each second (Technical report [32])

Horizontal T of different - Scalability

scalability cluster size (N ) (Figure 5)

Vertical T of different - Scalability

scalability cores per node (Figure 6)

Normalized edges - #E/T/N Scalability

per second (NEPS) (Figure 5, 6)

Computation Time actual - Raw processing power

time (Tc) for calculating (Figure 7)

Overhead - T − Tc Overhead

time (To) (Figure 7)

#V and #E are the number of vertices and the number of edges of
graphs, respectively.

B. Selection of graphs and algorithms

This section presents a selection of graphs and algorithms,
which is akin to identifying some of the main functional
requirements of graph-processing systems. We further discuss
the representativeness of our selection in Section V.

1) Graph selection: The main goal of the graph selection
step is to select graphs with different characteristics but with
comparable representation. We use the classic graph formal-
ism [33]: a graph is a collection of vertices V (also called
nodes) and edges E (also called arcs or links) which connect
the vertices. A single edge is described by the two vertices it
connects: e = (u, v). A graph is represented by G = (V,E).
We consider both directed and undirected graphs. We do not
use other graph models (e.g., hypergraphs).

Regarding the graph characteristics, we select graphs with a
variety of values for the number of nodes and edges, and with
different structures (see Table II). We store the graphs in plain
text with a processing-friendly format but without indexes. In
our format, vertices have integers as identifiers. Each vertex
is stored in an individual line, which for undirected graphs,
includes the identifier of the vertex and a comma-separated list
of neighbors; for directed graphs, each vertex line includes the
vertex identifier and two comma-separated lists of neighbors,
corresponding to the incoming and to the outgoing edges.
Thus, we do not consider other data models proposed for
exchanging and using graphs [34], [35] such as complex
plain-text representations, universal data formats (e.g. XML),
relational databases, relationship formalisms (e.g., RDF), etc.

Why these datasets? We select seven graphs which could
match, in scale and diversity, the datasets used by SMEs. Ta-
ble II shows the characteristics of the selected graph datasets2.
The graphs have diverse sources (e-business, social network,
online gaming, citation links, and synthetic graph), and a wide
range of different sizes and graph metrics (e.g. high vs. low

2We extract from each raw graph the largest connected component, so that
the vertices are reachable to each other in these graphs.

TABLE II
SUMMARY OF DATASETS.

Graphs #V #E d D̄ Directivity

G1 Amazon 262,111 1,234,877 1.8 4.7 directed

G2 WikiTalk 2,388,953 5,018,445 0.1 2.1 directed

G3 KGS 293,290 16,558,839 38.5 112.9 undirected

G4 Citation 3,764,117 16,511,742 0.1 4.4 directed

G5 DotaLeague 61,171 50,870,316 2,719.0 1,663.2 undirected

G6 Synth 2,394,536 64,152,015 2.2 53.6 undirected

G7 Friendster 65,608,366 1,806,067,135 0.1 55.1 undirected

d is the link density of the graphs (×10−5). D̄ is the average vertex degree of undirected
graphs and the average vertex in-degree (or average vertex out-degree) of directed graphs.

TABLE III
SUMMARY OF ALGORITHMS.

Algorithm Main features Use

A1 STATS single step, low processing decision-making

A2 BFS iterative, low processing building block

A3 CONN iterative, medium processing building block

A4 CD iterative, medium or high processing social network

A5 EVO iterative (multi-level), high processing prediction

degree, 1,663.2 vs. 2.1, respectively, directed and undirected
graphs, etc.). The synthetic graph (“Synth” in Table II) is
produced by the generator described in Graph500 [29]. The
other graphs have been extracted from real-world use, and have
been shared through the Stanford Network Analysis Project
(SNAP) [36]) and the Game Trace Archive (GTA) [2].

2) Algorithm selection: Why these algorithms? We have
conducted a survey of graph-processing of 10 representative
conferences in recent years over 100 papers (see technical
report [32]). We found that a large variety of graph processing
algorithms exist in practice [37] and are likely used by
SMEs. The algorithms can be categorized into several groups
by functionality, consumption of resources, etc. We focus
on algorithm functionality and select one exemplar of each
of the following five algorithmic classes: general statistics,
graph traversal (used in Graph500), connected components,
community detection, and graph evolution. We describe in the
following the five selected algorithms and summarize their
characteristics in Table III.

The General statistics (STATS) algorithm computes the
number of vertices and edges, and the average of the local
clustering coefficient of all vertices. The results obtained with
STATS can provide the graph analyst with an overview of the
structure of the graph.

Breadth-first search (BFS) is a widely used algorithm in
graph processing, which is often a building block for more
complex algorithms, such as item search, distance calculation,
diameter calculation, shortest path, longest path, etc. BFS
allows us to understand how the tested platforms cope with
lightweight iterative jobs.

Connected Component (CONN) is an algorithm for extract-
ing groups of vertices that can reach each other via graph
edges. This algorithm produces a large amount of output, as
in many graphs the largest connected component includes a
majority of the vertices.

Community detection (CD) is important for social network
applications, as users of these networks tends to form com-
munities, that is, groups whose constituent nodes form more



Graph-Processing Algorithms 

¨  Literature survey 
¤ 10 top research conferences: SIGMOD, VLDB, HPDC … 
¤ 2009–2013, 124 articles 

Class	
� Examples	
� %	
�
Graph Statistics	
� Diameter, PageRank 16.1	
�

Graph Traversal	
� BFS, SSSP, DFS	
� 46.3	
�

Connected Component	
� Reachability, BiCC 13.4	
�

Community Detection	
� Clustering, Nearest Neighbor  5.4	
�

Graph Evolution	
� Forest Fire Model, PAM 4.0	
�

Other	
� Sampling, Partitioning  14.8	
�



BFS:  
Results for all-2-all 

in Section III, using the process and metrics, and the datasets
and algorithms introduced in Section II. The complete results
are available through our technical report [33]. Compared with
the previous work (Section VI), our experiments show more
comprehensive and quantitative results in diverse performance
metrics.
The experiments we have performed are:
• Basic performance (Section IV-A): we have measured
the job execution time on a fixed infrastructure. Based
on these execution times, we further report throughput
numbers, using the edges per second (EPS) and vertices
per second (VPS) metrics.

• Resource utilization (Section IV-B): we have investigated
the CPU utilization, memory usage, and network traffic.
We report them for both the master and computing nodes
on the distributed platforms.

• Scalability (Section IV-C): we have measured the hori-
zontal and vertical scalability of the platforms; we report
the execution time and the normalized edges per second
(NEPS) for interesting datasets.

• Overhead (Section IV-D): we have analyzed the execution
time in detail, and report important findings related to the
platform overhead.

A. Basic performance: job execution time
The fixed infrastructure we use for our basic performance

measurements is a cluster of 20 homogeneous computing
nodes provisioned from DAS4. With the configuration in [33],
each node is restricted at using a single core for computing.
We configure the cluster as follows. For the experiments on
Hadoop and YARN, we run 20 map tasks and 20 reduce
tasks on the 20 computing nodes. Due to the settings used for
Hadoop [33], the map phase will be completed in one wave;
all the reduce tasks can also be finished in one wave, without
any overlap with the map phase [40]. In Giraph, Stratosphere,
and GraphLab, we set the parallelization degree to 20 tasks,
also equal to the total number of computing nodes.
With these settings, we run the complete set of experiments

(6 platforms, 5 different applications, and 7 datasets) and
measure the execution time for each combination. In the
remainder of this section, we present a selection of our results.
Key findings:
• There is no overall winner, but Hadoop is the worst
performer in all cases.

• Multi-iteration algorithms suffer for additional perfor-
mance penalties in Hadoop and YARN.

• EPS and VPS are suitable metrics for comparing the
platforms throughput.

• The performance of all the platforms is stable, with the
largest variance around 10%.

• Several of the platforms are unable to process all datasets
for all algorithms, and crash.

1) Results for one selected algorithm: We present here
the results obtained for one selected algorithm, BFS (see
Section II-B2).

TABLE V
STATISTICS OF BFS.

G1 G2 G3 G4 G5 G6 G7
Coverage [%] 99.9 98.5 100 0.1 100 100 100
Iterations 68 8 9 11 6 8 23
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Fig. 1. The execution time of algorithm BFS of all datasets of all platforms.

Because the starting node for the BFS traversal will impact
performance by limiting the coverage and number of itera-
tions of the algorithm, we summarize in Table V the vertex
coverage and iteration count observed for the BFS experiments
presented in this section. Overall, BFS covers over 98% of the
vertices, with the exception of the Citation (G4) dataset. The
iteration count depends on the structure of each graph and
varies between 6 and 68; we expect higher values to impact
negatively the performance of Hadoop.
We depict the performance of the BFS graph traversal in

Figure 1 and discuss in the following the main findings.
Similarly to most figures in this section, Figure 1 has a
logarithmic vertical scale.
Hadoop always performs worse than the other platforms,

mainly because Hadoop has a significant I/O between two
continuous iterations (see Section III). In these experiments,
Hadoop does not use spills, so it has no significant I/O within
the iteration. As expected, the I/O overhead of Hadoop is
worse when the number of BFS iterations increases. For exam-
ple, although Amazon is the smallest graph in our study, it has
the largest iteration count, which leads to a very long execution
time. YARN performs only slightly better than Hadoop—it has
not been altered to support iterative applications. Although
Stratosphere is also a generic data-processing platform, it
performs much better than Hadoop and YARN (up to an
order of magnitude lower execution time). We attribute this
to Stratosphere’s ability to optimize the execution plan based
on code annotations regarding data sizes and flows, and to the
much more efficient use of the network channel.
In contrast to the generic platforms, for Giraph and

GraphLab the input graphs are read only once, and then
stored and processed in-memory. Both Giraph and GraphLab
realize a dynamic computation mechanism, by which only
selected vertices will be processed in each iteration. This
mechanism reduces the actual computing time for BFS, in
comparison with the other platforms (more details are dis-
cussed in Section IV-D). In addition, GraphLab also addresses

No platform runs fastest for all graphs, but Hadoop is the worst performer.  
Not all platforms can process all graphs, but Hadoop processes everything.  



Giraph:  
Results for (algo*,platform*) 

Storing the whole graph in memory helps Giraph perform well 
Giraph may crash when graphs or number of messages large 



Horizontal scalability:   
BFS on Friendster (31 GB) 

Using more computing machines can reduce execution time 
Tuning needed for horizontal scalability, e.g., for GraphLab, split large 
input files into number of chunks equal to the number of machines 



Overhead (BFS, DotaLeague) 

We need new metrics, to capture meaning of computation time (more later) 
In some systems, overhead is by and large wasted time (e.g., in Hadoop) 



Additional Overheads 
Data ingestion time 

¨  Data ingestion 
¤ Batch system: one ingestion, multiple processing 
¤ Transactional system: one ingestion, one processing 

¨  Data ingestion matters even for batch systems 
Amazon	
� DotaLeague	
� Friendster	
�

HDFS	
� 1 second	
� 7 seconds	
� 5 minutes	
�

Neo4J	
� 4 hours	
� days	
� n/a	
�



Productivity 

¨  Low throughput in terms of LOC for all models  
¨  Days to hours development time for the simpler 

applications 
 

We need better productivity metrics!  



PGX.D: Performance Evaluation 
(PageRank, Twitter, Infiniband) 
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Lessons learned* 

¨  Performance is function of  
(Dataset, Algorithm, Platform, Deployment) 
¤  Previous performance studies may lead to tunnel vision 

¨  Platforms have their own drawbacks  
(crashes, long execution time, tuning, etc.) 
¤  Best-performing is not only low response time 
¤  Ease-of-use of a platform is very important 

¨  Some platforms can scale up reasonably with cluster 
size (horizontally) or number of cores (vertically) 
¤  Strong vs weak scaling still a challenge 

n  workload scaling tricky 

*All results and details: 
http://www.pds.ewi.tudelft.nl/fileadmin/pds/reports/2013/PDS-2013-004-4.pdf  

Such manual evaluation is never comprehensive or scalable …  
Adding PGX.D by hand would take 4-5 weeks!  

There are 20+ other interesting platforms …  
Can we do better than manual ?  



From single- to many- (to all ?) evaluations  
A systematic approach 

Methodology 



Graph Processing Platforms	
�

¨  Platform: the combined hardware, software, and 
programming system that is being used to complete  
a graph processing task. 

Trinity 

Which to choose? 
What to tune? 



Abstraction	
�

A Graph Processing Platform	
�

Algorithm ETL 

Active Storage 
(filtering, compression, 
replication, caching) 

Distribution 
to processing 

platform 



Objectives: scalability & peformance	
�

A Graph Processing Platform	
�

Algorithm ETL 

Active Storage 
(filtering, compression, 
replication, caching) 

Distribution 
to processing 

platform 
Ideally,  

N cores/disks à 
Nx faster 

Ideally,  
N cores/disks à 

Nx faster 



Evaluating graph-processing platforms 

90 

•  Graph500 
•  Single application (BFS), Single class of synthetic datasets 

•  Few existing platform-centric comparative studies 
•  Prove the superiority of a given system, limited set of metrics 

•  GreenGraph500, GraphBench, XGDBench 
•  Representativeness, systems covered, metrics, … 

 

Metrics 
Diversity	
�

Graph 
Diversity	
�

Algorithm 
Diversity	
�



Graphalytics:  
A Challenging Benchmarking Process 

¨  Methodological challenges 
¤  Challenge 1. Evaluation process 

¤  Challenge 2. Selection and design of performance metrics 
¤  Challenge 3. Dataset selection and analysis of coverage 

¤  Challenge 4. Algorithm selection and analysis of coverage 

¨  Practical challenges 
¤  Challenge 5. Scalability of evaluation, selection processes 
¤  Challenge 6. Portability 

¤  Challenge 7. Result reporting 

Y. Guo, A. L. Varbanescu, A. Iosup, C. Martella, T. L. Willke: 
Benchmarking graph-processing platforms: a vision.  
ICPE 2014: 289-292 



Graphalytics 



Graphalytics:  
Many Classes of Algorithms 

Literature survey of metrics, datasets, and algorithms  
¤  All 124 articles in 10 top research conferences: SIGMOD, VLDB, HPDC … 

(2009–2013) 

Class	
� Examples	
� %	
�
Graph Statistics	
� Diameter, PageRank 16.1	
�

Graph Traversal	
� BFS, SSSP, DFS	
� 46.3	
�

Connected Component	
� Reachability, BiCC 13.4	
�

Community Detection	
� Clustering, Nearest Neighbor  5.4	
�

Graph Evolution	
� Forest Fire Model, PAM 4.0	
�

Other	
� Sampling, Partitioning  14.8	
�

Y. Guo, M. Biczak, A. L. Varbanescu, A. Iosup, C. Martella, and T. 
L. Willke. How Well do Graph-Processing Platforms Perform? An 
Empirical Performance Evaluation and Analysis, IPDPS’14. 

Future work 



TABLE I
SUMMARY OF PERFORMANCE METRICS.

Metric How measured? Derived Relevant aspect (use)

job execution Time the full - Raw processing power

time (T ) execution (Figure 1, 3, 4)

Edges per - #E/T Raw processing power

second (EPS) (Figure 2)

Vertices per - #V/T Raw processing power

second (VPS) (Figure 2)

CPU, memory, Monitoring - Resource utilization

network sampled each second (Technical report [32])

Horizontal T of different - Scalability

scalability cluster size (N ) (Figure 5)

Vertical T of different - Scalability

scalability cores per node (Figure 6)

Normalized edges - #E/T/N Scalability

per second (NEPS) (Figure 5, 6)

Computation Time actual - Raw processing power

time (Tc) for calculating (Figure 7)

Overhead - T − Tc Overhead

time (To) (Figure 7)

#V and #E are the number of vertices and the number of edges of
graphs, respectively.

B. Selection of graphs and algorithms

This section presents a selection of graphs and algorithms,
which is akin to identifying some of the main functional
requirements of graph-processing systems. We further discuss
the representativeness of our selection in Section V.

1) Graph selection: The main goal of the graph selection
step is to select graphs with different characteristics but with
comparable representation. We use the classic graph formal-
ism [33]: a graph is a collection of vertices V (also called
nodes) and edges E (also called arcs or links) which connect
the vertices. A single edge is described by the two vertices it
connects: e = (u, v). A graph is represented by G = (V,E).
We consider both directed and undirected graphs. We do not
use other graph models (e.g., hypergraphs).

Regarding the graph characteristics, we select graphs with a
variety of values for the number of nodes and edges, and with
different structures (see Table II). We store the graphs in plain
text with a processing-friendly format but without indexes. In
our format, vertices have integers as identifiers. Each vertex
is stored in an individual line, which for undirected graphs,
includes the identifier of the vertex and a comma-separated list
of neighbors; for directed graphs, each vertex line includes the
vertex identifier and two comma-separated lists of neighbors,
corresponding to the incoming and to the outgoing edges.
Thus, we do not consider other data models proposed for
exchanging and using graphs [34], [35] such as complex
plain-text representations, universal data formats (e.g. XML),
relational databases, relationship formalisms (e.g., RDF), etc.

Why these datasets? We select seven graphs which could
match, in scale and diversity, the datasets used by SMEs. Ta-
ble II shows the characteristics of the selected graph datasets2.
The graphs have diverse sources (e-business, social network,
online gaming, citation links, and synthetic graph), and a wide
range of different sizes and graph metrics (e.g. high vs. low

2We extract from each raw graph the largest connected component, so that
the vertices are reachable to each other in these graphs.

TABLE II
SUMMARY OF DATASETS.

Graphs #V #E d D̄ Directivity

G1 Amazon 262,111 1,234,877 1.8 4.7 directed

G2 WikiTalk 2,388,953 5,018,445 0.1 2.1 directed

G3 KGS 293,290 16,558,839 38.5 112.9 undirected

G4 Citation 3,764,117 16,511,742 0.1 4.4 directed

G5 DotaLeague 61,171 50,870,316 2,719.0 1,663.2 undirected

G6 Synth 2,394,536 64,152,015 2.2 53.6 undirected

G7 Friendster 65,608,366 1,806,067,135 0.1 55.1 undirected

d is the link density of the graphs (×10−5). D̄ is the average vertex degree of undirected
graphs and the average vertex in-degree (or average vertex out-degree) of directed graphs.

TABLE III
SUMMARY OF ALGORITHMS.

Algorithm Main features Use

A1 STATS single step, low processing decision-making

A2 BFS iterative, low processing building block

A3 CONN iterative, medium processing building block

A4 CD iterative, medium or high processing social network

A5 EVO iterative (multi-level), high processing prediction

degree, 1,663.2 vs. 2.1, respectively, directed and undirected
graphs, etc.). The synthetic graph (“Synth” in Table II) is
produced by the generator described in Graph500 [29]. The
other graphs have been extracted from real-world use, and have
been shared through the Stanford Network Analysis Project
(SNAP) [36]) and the Game Trace Archive (GTA) [2].

2) Algorithm selection: Why these algorithms? We have
conducted a survey of graph-processing of 10 representative
conferences in recent years over 100 papers (see technical
report [32]). We found that a large variety of graph processing
algorithms exist in practice [37] and are likely used by
SMEs. The algorithms can be categorized into several groups
by functionality, consumption of resources, etc. We focus
on algorithm functionality and select one exemplar of each
of the following five algorithmic classes: general statistics,
graph traversal (used in Graph500), connected components,
community detection, and graph evolution. We describe in the
following the five selected algorithms and summarize their
characteristics in Table III.

The General statistics (STATS) algorithm computes the
number of vertices and edges, and the average of the local
clustering coefficient of all vertices. The results obtained with
STATS can provide the graph analyst with an overview of the
structure of the graph.

Breadth-first search (BFS) is a widely used algorithm in
graph processing, which is often a building block for more
complex algorithms, such as item search, distance calculation,
diameter calculation, shortest path, longest path, etc. BFS
allows us to understand how the tested platforms cope with
lightweight iterative jobs.

Connected Component (CONN) is an algorithm for extract-
ing groups of vertices that can reach each other via graph
edges. This algorithm produces a large amount of output, as
in many graphs the largest connected component includes a
majority of the vertices.

Community detection (CD) is important for social network
applications, as users of these networks tends to form com-
munities, that is, groups whose constituent nodes form more

Graphalytics: 
Real & Synthetic Datasets 

 
 The Game Trace Archive 

 

https://snap.stanford.edu/ http://www.graph500.org/ http://gta.st.ewi.tudelft.nl/ 

Y. Guo and A. Iosup. The Game Trace Archive, NETGAMES 2012. 

 

Interaction graphs  
(possible work) 

 

LDBC  

Social Network 

Generator 



Graphalytics: 
Enhanced LDBC Datagen 

¨  A battery of graphs covering  
a rich set of configurations 

¨  Datagen extensions to 
¤ More diverse degree distributions 
¤ Clustering coefficient and  

assortativity 

LDBC D3.3.34 
http://ldbcouncil.org/sites/default/files/LDBC_D3.3.34.pdf  
Orri Erling et al. The LDBC Social Network Benchmark: 
Interactive Workload, SIGMOD’15 

 

Ongoing work 



Graphalytics:  
Metrics of interest  
¨  Raw processing power 

¤  Execution time 
¤  Actual computation time 
¤  Normalized Edges/Vertices per second 

¨  Resource utilization 
¤  CPU, memory, network 

¨  Scalability 
¤  Horizontal vs. vertical 
¤  Strong (fixed work) vs. weak (scaled work) 

¨  Overhead 
¤  Data ingestion time 
¤  Other overheads  

¨  Cost? 
Y. Guo, A. L. Varbanescu, A. Iosup, C. Martella, T. L. Willke: 
Benchmarking graph-processing platforms: a vision.  
ICPE 2014: 289-292 



Graphalytics: 
Monitoring & Logging 

¨  Automatic 
analysis 
matching the 
programming 
model 
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Ongoing work 

A. Iosup et al., Towards Benchmarking IaaS and PaaS Clouds for Graph Analytics. WBDB 2014 



Graphalytics: 
Choke-Point Analysis 

¨  Choke points are crucial technological  
challenges that platforms are struggling with 

¨  Examples 
¤ Network traffic 
¤ Access locality 
¤  Skewed execution 

¨  Challenge: Select benchmark workload based on  
real-world scenarios, but make sure they cover the 
important choke points 

 

near-future work 



Graphalytics: 
Advanced Software Engineering Process 

¨  All significant modifications to Graphalytics are  
peer-reviewed by developers 
¤  Internal release to LDBC partners (Feb 2015) 

¤  Public release, announced first through LDBC (Apr 2015*) 

¨  Jenkins continuous integration server 
¨  SonarQube software quality analyzer 

 
 https://github.com/mihaic/graphalytics/ 



Graphalytics:  
Results easy to read/interpret 

¨  Missing results = failures of the respective systems 
5 classes of algorithms 

10 platforms tested w prototype implementation 

Many more metrics supported 

Data ingestion not included here! 

6 real-world datasets +  
2 synthetic generators 



Graphalytics in practice 

The hour of benchmarking  



Schedule   

¨  Benchmarking with Graphalytics 
¤ Get to know the system: step-by-step tutorial 

n Simple example (TBA) 

¤ Team-work 
n A real-life problem (TBA) 

¨  BONUS: Fine-grained in-depth analysis with 
Granula 
¤ Step-by-step tutorial  

n An example (TBA) 



Open discussion 



Discussion 1 

¨  How much preprocessing should we allow in the ETL 
phase?  

¨  How to choose a metric that captures the 
preprocessing? 

Algorithm ETL 

Active Storage 
(filtering, compression, 
replication, caching) 

Distribution 
to processing 

platform 

Graph Processing	
�



Discussion 2 

¨  Trade-off between fast dataset submission (reads 
from the database or full-scale generation) and cost 
(of storage, of computation). 



Discussion 3 

¨  Should we allow platform-specific algorithms or 
only implementations of exhaustively defined 
algorithms? 



Discussion 4 

¨  How should we asses the correctness of algorithms 
that produce approximate results? 



Discussion 5 

¨  How to setup the platforms? Should we allow 
algorithm-specific platform setups or should we 
require only one setup to be used for all 
algorithms? 



} Provide a platform for collaborative research efforts in 
the areas of computer benchmarking and quantitative 
system analysis 
} Provide metrics, tools and benchmarks for evaluating 
early prototypes and research results as well as full-
blown implementations 
} Foster interactions and collaborations btw. industry and 
academia 

Mission Statement 

The Research Group of the  
Standard Performance Evaluation Corporation 

SPEC Research Group (RG) 

Find more information on: http://research.spec.org 



Take home message 



Summary 

¨  Graph processing is a hot topic for both software 
and hardware developers  

¨  Challenges in scale and irregularity 
¨  Existing platforms: over 80!  
¨  Choose which one to use  

¤ Quick: pick a platform where your graph fits and you 
can program. 

¤ Graphalytics: use systematic benchmarking  

Find us online:  graphalytics.ewi.tudelft.nl 


