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ABSTRACT

In this paper we consider the problem of optimal flow
control in a multiclass telecommunications environment
where each user (or class) desires to optimize its perfor-
mance while being 'fair’ to the other users (classes). The
Nash Arbitration Scheme from game theory is shown to be
a suitable candidate for a fair, optimal operation point in the
sense thal it satisfies certain axioms of fairness and is Pareto
optimal. This strategy can be realized by defining the prod-
uct of individual user performance objectives as the network
optimization criterion. This provides the rationale for con-
sidering the product of user powers as has been suggested
in the literature of computer communication networks. It is
shown that these points are unique in the throughput space
and we also obtain some convexity properties for power and
delays with respect to throughputs in a Jackson network.

INTRODUCTION

Flow control has traditionally been used in the context
of congestion avoidance in networks. A multiclass environ-
ment arises due to multiple users in the network or due to
wultiple types of trallic. Different classes often have con-
Micting performance objectives, leading to a natural game
theoretic ramework for the analysis of the flow control prob-
lem. The use of game theoretic.concepts in network opti-
mization has been considered in [5], [12], [16], [18] and [19]
where the emphasis was on Lhe characterization of operating
points, i.e. the throughputs of the individual classes, based
on game theoretic equilibria.

In earlier work ([6], (7]) we argued that the network
should be operated al Pareto optimal points since mathe-
matically they correspond to equilibria from which any de-
viation will lead to the degradation in performance of at
least one user or class. In this paper we use the Nash arbi-
tration scheme, a game theory concept, to select a unique
operating point among the multiple Pareto optimal points.
This allows us to deal with the issue. of optimality as well
as fairness at the same time.

The organization of the paper is as follows: In Section 1
we discuss Lhe issue of fairness and performance objectives
and present the main result. In Section 2 we show that user
performance based on the power function satisfy the
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requirements of Section 1. In doing so we show some new
convexity results of the inverse of user power and delays in a
Jackson-type network. In Section 3 we offer some concluding
remarks.

1.0 PERFORMANCE MEASURES: FAIRNESS
AND OPTIMALITY

In the multiclass environment the users or classes can be
differentiated based on the grade of service required. Thus
it makes little sense to maximize an overall network perfor-
mance measure without regard to the actual performance of
each user or class.

Game theory provides a natural framework for the anal-
ysis of the problem. This is not just an artifact, the advan-
tage is that now we have a precise mathematical framework.
This allows us to address the important issue- of fairness as
well as the proper operating points for the network. [1] and
[17] are good references on game theory.

In a game theoretic setting there are two inherently dif-
ferent types of situations : cooperative and non-cooperative
games. The non-cooperative game [ramework is one in
which every class or user acts individually to optimize its
performance measure without regard to the performance of
other classes. Such a procedure leads to a Nash equilibrium
point in the network [12]. This situation is important when
the users act based only on local information [2], [8]. How-
ever, if the users are able to cooperate then the performance
of each class or user may be made better thau the perlor-
mance achieved by the Nash equilibrium. This is because
the cooperative equilibrium point turns out to be a Pareto
optimal point and it has been shown thal under general as-
sumptions Nash equilibria are dominated by Pareto optimal
points [9]. Hence it is desirable to operate the network al
Parcto optimal points. With the cooperative lramework as
the basis we can then study the important issue of [airness.

The issue ol lairness has been an important component
in the design of optimal flow control schemes since it has
been shown that there exist situations where a given scheme
might optimize network throughput while denying access to
a particular (or a set of) user(s) [10]. However, fairness is
difficult to qu#tify in the absence of a proper framework.
Loosely speaking, fairness can be thought of as a situation
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in which no individual class or user is denied access to the
network or overly penalized.

In [10], Gerla and Staskausas define a notion of *optimal
fairness' in which total throughput is maximized subject
to the network capacity being fairly utilized. An scheme
whieh provides for equal sharing when the demands exceed
capacity is then suggested as a fair scheme. From a game-
theoretic standpoint, such a point is not special. Moreover,
the tradeofl between throughput and delay is not taken into
acconnt. Several other ad hoe schemes might be proposed
based on the ratios of individual demands or the precise
nature of the individual performance objectives.

We now introduce a notion of fairness drawn from the
cooperative game framework which has a precise mathemat-
ical interpretation whieh subsumes the usual assumptions as
to what constitutes fairness. The most important outcome
is that 1t leads to the optimization ol a unique performance
measure which is characterized completely by the individual
performance measures,

The key notion of a fair strategy in cooperative game
theory is the wotion of the Nash arbitration strategy
[20]. In order for a strategy to be a Nash arbitration strategy
it should satisfy the axioms of fairness given below. See [17]
for o discussion on the Nash arbitration scheme.

In order to state the axioms we first introduce the math-
ciatical framework:

Consider a cooperative game of N playvers (users). Let
cach individual plaver i have an objective function fi(x)
N — R where N ois a conves, closed and bounded set
of RY. From the point ol view ol communications net-
works N owill denote the space of throughputs. Let «* =
e e s uy] where w? = fi(a*) for some o € X
denote a common agreement point which all the players
agree to as a starting point for the game. In general u*
can be thought of as the vector of individual user perfor-
mances which the user would like to at least achieve if they
enter the game. Let [/, u*] denote the game defined on X
with initial agreement point u* where U denotes the image
of the set X under f(. ) ie. [(X)=U. Let Fl,v*] : U — U
be an arbitration strategy. Then I is said to be a Nash
arbitration strategy if it satisfies the four axioms below:

I. Let ¢o(u) = o' where u.';» = a;u; + b; fori=12,...,N
and «; > 0, b; are arbitrary constants. Then

Flegth), ¢(u*)] = ¢(F[U,u*])

This states that the operating point in the space of
strategies is invariant with respect to linear utility trans-
formations,

2. The arbitration scheme must satisfy :

(P[] 2 uf ford = 1,2, N
and furthermore there exists no u € X such that u; =
(F[U,u*]); for all i=1,2,3, ,N. This is the notion of Pareto
optimality of the arbitrated solution.

3. Let [Uy,u*] and [Us,u*] be two games with the same
initial agreement point such that

(i) Uy C Uy
(i) Fy,u*] € U

Then F[U u*) = Fllg,u*)

This is called the independence of irrelevant alternatives
axiom . This states that the Nash arbitration scheme of a
game with a larger set of strategies is the same as that of
the smaller game if the arbitration point is a valid point for
the smaller game. The additional strategies are superfluous.

4. Let U be symmetrical with respect to a subset
J C {1,2,3,.N} of indices (i.e. let i,j € J and ijj, then
{l.!]. Uy g g |y UGy Wi ]y ey UG ] Uy UG ]y ey ‘ILN} e U.

IMuf = uj then (FlU,u*); = (F[U,u*);. forije J.

This is the axiom of symmetry which says that if the
set of utilities is symmetric then for any two players if the
initial agreement point corresponds to equal performance
then their arbitrated values are equal.

REMARK: Note that the above axioms guarantee thal
no user (or class) is denied access to the network if u* = 0
(provided superior points exist) and the arbitrated solution
is at least as good as the Nash equilibrium if u* is taken to be
the Nash equilibrium. Thus, in particular, the axioms imply
that a Nash arbitration strategy for the network in which
the users have the same performance objectives will corre-
spond to equal sharing il the set of admissible throughputs
is symmetric and if the initial agreement point is chosen 1o
be one which corresponds to equal throughputs by Axiom
4.

The  following theorem (due to Stefanescu and
Stefanescu [21]) characterizes the Nash arbitration scheme.

Theorem 1 (Nash Arbitration Scheme)

Let f; + X —= R i=12,..,N be concave, up-
per bounded, functions defined on X a convex, closed and
bounded set of RV

Lot 11 = {u e RN :3re X st.u< f(x)}

and X(u) = {2 : v £ f(z)} and Xg = X(u*). .

Then the Nash arbitration scheme is given by the point
which maximizes the unique function:

N
Vie) = TIUie) = uf)
|
il Xg contains vectors x which result in the user objectives
strictly superior to u*. If the vectorsin X have the property
that there exist x € Xj such that only k of the individual
objectives are superior to the corresponding elements of w*
then the unique function is taken as the product of the in-
dividual objectives for which there exist superior solutions.
The remaining (n-k) components of u* are the user objec-
tives at the Nash arbitration point.

over X

REMARK: It is important to note that the solution in
general depends on the initial agreement point. The point
where V(x) is maximized is defined as the fair network op-
timal operating point. )

The use of the power function as the ratio of the average
throughput over the average delay has been used in the
context of flow control for some time [14], [11], [13]. In
fact, it has been noted that the product of powers is a
more appropriate optimization criterion [2] since the overall
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network power was not found to be suitable. In the following
section we shall show that the inverse of the Power function
satisfies the assumptions of the theorem and thus the above
result justifies the use of the product of powers as a network
optimization criterion. A by-product of the above result is
the notion of decentralizability. For the power criterion it
can be shown that the Nash equilibrium is Pareto inefficient
and thus the non-decentralizability of the power criterion
based on only local optimization is immediate since local
optimization leads to a Nash equilibrium point (8]. It can be
shown however that for a single M/M/1 queue the product
of powers can be decentralized as in [7]. In general, we can
say that a criterion is decentralizable if the Nash arbitration
strategy can be implemented as a distributed procedure.

Before concluding this section it is important to note
that the Nash arbitration strategy is not the only 'fair’ arbi-
tration scheme possible. In fact, standard criticisms of the
Nash scheme (see Luce and Raiffa [17] for a complete dis-
cussion) led to the development of other arbitration schemes
due to Raiffa [17] and Thompson [3]. However it can be
shown that these other schemes correspond to Nash arbitra-
tion schemes for performance objectives obtained by linear
transformations of the original objectives [3] and thus we
restrict ourselves to the Nash arbitration scheme.

In"the next section, we define some additional perfor-
mance objectives for the design of optimal, fair flow control
schemes. These will be shown to satisfy the hypothesis of
the theorem and thus the existence of the Nash arbitration
scheme, Moreover we shall show that the optimization re-
sults in unique points in the throughput space.

2.0 OPTIMAL FAIR SOLUTIONS : EXISTENCE
AND UNIQUENESS

In this section we describe and analyse the design of an
optimal, fair flow control scheme in a packet switched mul-
ticlass telecommunications environment. The performance
criterion is the product of user powers (PPC) where power
is defined as the ratio of the average throughput over the av-
erage delay of a particular user or class. It is shown that the
stationary point for the PPC is the Nash arbitration scheme
and gives rise to a unique vector of user throughputs.

2.1 Product of Powers Criterion

The product of powers (PPC) as a network performance
criterion has been proposed in the context of performance
oriented flow control for single class packet switched net-
works by Bharathkumar and Jaffe [2]. This was due to the
fact that the overall network power was found to be unsuit-
able as it was deemed as lacking fairness properties. It was
also noted that there could be difficulties associated with
the non-concavity of the user power function. The results
reported here show that the maximization of the PPC re-
sults in the Nash arbitration scheme and moreover the Nash
arbitration scheme is unique in the space of throughputs, a
strong result in light of the non-concavity.

When working with the user power function Theorem
1 cannot be directly applied to show the existence of the

Nash arbitration scheme due to the non-concavity of the
individual user power. We show however that the inverse
of user power is convex with respect to the throughputs
and using this property we show the existence of a Nash
arbitration scheme. We then show that this result is also
unique in the space of throughputs.

Let § = [S1,S52,..., SN]! denote the average through-
puts for the N players in the network. We assume that the
network is modelled as a Jackson network of M/M/1 queues
with loop-free routing. We also assume that there are L
links with link capacities C = [e1,¢9,....c. ; cL]T.

Let A = [Ay,Ag,....,Ay]" denote the vector of cor-
responding user delays. .

Let P; = %— i = 1,2,...,N denote the power function
of user i which 1s defined on the set of admissible through-
puts

U=1{s 20: 0<y<¢q;l=121L}
where 7, denotes the total throughput on link 1.

Lemma 2.1 . _
For a Jackson network with loop-free routing the inverse
of the power of user i, i=1,2,...,N defined by
A 5
= oy L 1
is convex in the space of throughputs i.e. Pi_l is a convex
function of S.

Proof :

To prove the assertion we first decompose the expression
for inverse power in terms of the link contributions. This is

" because the average user delay is additive over links. Thus :

A.
-1 -1 _ il
o = XJ:PN =35

where A;; is the contribution to the delay of user i by link 1.
We now establish the convexity of Pl."‘l by showing that
the Hessian matrix :

Hy =

yﬁJ]
0505y
is positive semi-definite.

We first consider the case of fixed routing in the network.
Then the following expressions are easily shown:

BQA,-; _ 2a

61:6 2
85:5; ~ (q-wP o !
aA & .
- 5 3)
S, (g - 2" (
a

Begi 5 e (4)

S

where « is the mean packet length and §;; denotes the

Kronecker delta function. Hence by direct calculation we

obtain:

apy!

35 05;

1 024y 1 8Ay 1 85y 2

— = _ - =i Neciboibs

= 585,95, ~ 5795t T 5795, 4 T g@oucuti
(5)
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35:05,
1 82A, 1 84y 1 BA,[ 2

(5
[For the purpose of notational simplicity we suppress the usel
index. This is legitimate since interchanging rows and cor-
responding eolumns of a matrix does not alter its character
(i.e. positive semidefiniteness etc.). Thus the (1,1) element

of I1;; can be considered as ga%l— for any i=1,2,...,N.

Let My, My, M}, denote the leading principal minors of
dimensions 1x1,2x2, ...kxk. In general k < N since all the
different classes need not share the given link. Then it is
straightforward to show that

2
detM, = 25 [

WSZ - Slar—m) + (a—w? 2

20 9
e =
for all feasible throughputs ie. 820, — 5 =2 0.

The 2nd. principal minor can be shown to be:
My =

2a 52 =S =)+ -n? S2-5c—m)
Sy —) S — $(a— ) 5t
and hence
det M ——3 >0
Jaelivig =~
25(cp—m)

It can be shown that the higher order leading principal
minors My, for k=3,4,...,N have the property that detM; =
0. This follows from the fact that the Hessian matrix has
the form :

a—2b+c¢c a=b a-=b ... a-=b 0 .. 0
a—bh a @ a 0 au B
a~bh a a a a 0 0

0 0 0 0 0 ¢ 0 0

and hence for £ > 3 the minors contain repeated rows and
thus are singular. The 0's in the matrix arise if class j does
not use link | which user i takes. From above it also follows’
that all the remaining principal minors have determinant 0.

Hence it follows that H;; is positive semi-definite which
demonstrates the convexity of Pi-fl. Since Pi'l is the sum
over all links | used by i it too is convex.

The convexity of Pi_l in the case with random loop-free
routing follows immediately since the corresponding Hessian
is a convex combination of the Hessian with fixed routing.

Remark: The loop-free assumption is reasonable in com-
munication networks where the routing is usually feed-
forward.

We now use the above result to show the existence of a
Nash arbitration scheme for the case of PPC.

Theorem 2.2

Consider a Jackson network with loop-free routing with
N users. Let the performance objective of each user be the
power function defined by :

5; :
—m =12
where S; is the average throughput of user i, A;(S) repre-
sents the corresponding average delay and S the vector of
user throughputs.

The flow control scheme, which maximizes the product
of the user powers (PPC) is an optimal, fair flow control
scheme in the sense that it corresponds to a Nash arbitration
scheme for — P! and given by : -

Pi(S) = s N

N
S§* = argmaz H FPi(S5) (6)
i=1
Moreover, §* is unique, Pareto optimal and results in user
powers superior to the Nash equilibrium.

Proof:

Note, from the previous Lemma, P

each i and hence —PfI(S} is concave. Working in the
inverse power space precludes us from choosing the point
[0, 0 0]T as the initial agreement point. Hence, we need
to choose an initial agreement point u* in the inverse power
space which is achievable in the set of feasible throughputs
X. Before proceeding to show that §* indeed corresponds to
a Nash arbitration scheme we first show that S5* is Pareto
optimal and unique.

Consider the functions Pj(S) and [I{¥ P;(S). Then
sinee [5(5) is delined on X which is compact and convex,
['I{V P;(S) is continuous and hence achieves its maximum on
X. Since F4(5) is zero on the boundary of X it implies thatl
the maximum is achieved in the interior of X. Hence the
necessary condition that S* satisfies is :

1(8) is convex for

, Vs l_‘TIPi(-S') lg» = 0 (7)
- Rewriting this in matrix form gives :
ae g L G [k PiS)
8h oh L || muPis)| =0
gh gh T L 9B | ([ Pi(S)
at'§ = B (8)

Let J(S) denote the matrix above. Then from the obser-

vation that Pj(S*) # 0 for all i, this implies that the matrix

J(5*) is singular. But the matrix J(S) is the Ljanbp(mc of the
Jacobian matrix for [P(S), Po(S), .., Pn(8))T and hence it
implies that Det |J(S*)] is zero. But this is the necessary
condition for a point to be Pareto optimal [22]. From the
fact that any (see following) deviation from S* results in at
least one player with lower power it is also sufficient and
thus S* is the Pareto optimal point.

We now compare this point with the Nash equilibrium
point. That the Nash equilibrium exists follows from the fact
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that the functions 5(S) are concave in their own through-
puts i.e. w.r.d S; (see Rosen [23]). The Nash equilibrium
point for this case corresponds to the point S at which :

W) =0 9)
as; '

Hence, it is readily seen that the Nash equilibrium is not

Pareto optimal and hence is Pareto inefficient (see [9]).

We now show the uniqueness of the point S* in the space
ol admissible throughputs.

IFirst note that from above it follows that the stationary
point results in non-zero throughputs for each user. Define
sy = ﬂ;i] FP;(S). Then let S* denote the stationary
point of IT1(S) then it is easy to show that the necessary
condition that S* maximize I1(S) is given by :

1 1 an, ... ;
= = ——==(5") i=12,.,N L0
St I](F*}r’)S’,-(“ ) (10)
Clonsider a perturbation of the point S* given by
§ = 8 4+ Ke
for some feasible direction in the space of throughputs i.c.
.“-\"I = ‘\,* =+ A!,'( i 1.2,...,1’\:
Then the product of throughputs is given by : ["]‘jv(.,‘-',‘). Nor-
malizing this at the point S* gives the normalized product
of throughputs as :

N i N

¥
L Yinsni o1
1 = 1 sNi Ns ¢
where ¢; = ¢ — 3/ the residual flow in the link under S*

and /N s N2 denotes the set { users s and i which use link
1
Similarly the product of the mean delays is given by
N
H ( z a )
1 Mini (er = Zinsni kse)
Upon normalization with respect to the delays at the sta-
tionary point and rearrangement this can be written as:

' akge

N ‘ i

H(I 3 Zmzzmmzm) (12)
1

ini é—:

Now it is easy to show that this is greater than (strict if at
least one of the kg is non-zero):

N Tini Zinsni &
II (1 +
1

(-
Tinig )
By comparing (11) with (13) it can be easily seen that the
normalized product of perturbed throughputs is less that the
normalized product of perturbed delays implying that the
perturbed PPC normalized around the stationary point is <
I. This implies that any perturbation of the stationary point
1s not optimal establishing the uniqueness of the maximizing
point in the throughput space.

ALF

Vg €

—r

(13)

Having established the uniqueness of the point S* we
now show that it corresponds to a Nash arbitration point
for the negative inverse power.

Take as the initial agreement point u* the point where
up = —aP7US*) i=1,2.,Nfora > I suffi
ciently large. Then u* is a valid initial agreement point
for a game played by N players with —Pi—l(S') as individ-
nal objectives. This is because if a is sufficiently large then
—aPTHEYY < mazg - P,-_l(f-'] and the maximum of
the individual negative inverse powers exists since the func-
Lions are concave over a convex, compact domain of feasible
throughputs X and attain the value —oco on the boundary
of X. Now in order ¢o apply Theorem 1 to the concave,
upperbounded (because of the comment above) functions
—Pf' (5) we need to show the convexity and compactness
of the set :

Xglu™) = 48
where
U= i : 38 e X sdoily < —P{I(.‘v'), t= 1,2V}

Note that by our choice of u* | Xy(u*) is non-empty.
Choose any arbitrary points u! and u2 in U. Then ta show

w € Usdou 2ufi=12,.,N}

that Xg(e') is convex it is enough to show that U is convex.
To show that U is convex we need to show that u? =
cu + (1—c)u?, for0< ¢< 1lisin U.

Let S and S2 be two throughput vectors corresponding
to u! and u? vespectively. Then froni the definition of 11 we

have:

o=FUEY) + (1 ~efl=E7 4% = o]

!
and from the concavity ol — f’fl(h') over X we have :
_[Jrfl (S.'i) —Pfl ((.‘.‘;] + (1- C)IL‘"J] >

> ﬁcl’r-_}(..q]_) — (1 —c')PL-_l(S“z) > u.:,-’.

The convexity of X implies that S% is a valid throughput
and hence u® belongs to U. Hence, the set X(u*) is convex.
Compactness follows from the lact that the sel is closed and
hounded.

Hence, applying theorem | to the user [unctions
—Piwl(.g}, = 1,2,..., N with initial agreement point u*,
the Nash arbitration scheme exists and is the point which
maxinizes ]_[J\( =P ! (N) = uj)over Xg(u*). The necessary
conditions for this are :

s (=P7'(S) = w)
XEE

A=P7US)y —u3) | _
Jsy | Mz e~ 0 (14)
n_,‘gﬁt_ﬂil(sj = ”;)
Pn(5)?
al the stalionary point. J(S) is the matrix defined above
and corresponds to the transpose of the Jacobian for the
vector of powers. Note that P;(S) # 0 at the stationary
point since Xp(u*) excludes the point [0,0......,0].
Multiply the vector on the lhs of (14) by
(=DM =TV Pi(S))? then the Lhs of (14) evaluated at the
point §* can be written as :

(M1 Pi(S*))(1 — a)¥ -1

J(S*) | [y Pi(S*(L — )V 1

[Mjzw P(SHI(1 - a)¥ =1
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From the definition of S* we see that the vector
[[Tjgq PilS* )eswees nj?&N Pj.(.‘f‘]]T belongs to the m.llll space
of J(5*) and hence S* satisfies the necessary condition for
it to be the stationary point of ]'['j\'(—l"._](,k') —ut). The
concavity ol the Tunetions 71’"-_'(."'] — w} imphes that the
condition is also suflicient and hience S* s the Nash arbitra-
tion seheme for the negative inverse powers and the proof is

tllilll"

REMARKS: The lack of concavity of the user power fune-
tion presents dilliculties in concluding that the point which
maximizes the PPC s a Nash o arbitration scheme for the
power criterion. This as doe 1o the difficulty of showing,
that the set U ol allowable prowers 15 conves and cotnpact,
However, several non-trivial examples have heen worked oul
which show that the set U s i fact convex and compact.
s leads us to conjecture that the maximization point of
the PPCs i fact the Nash arbitration scheme for the power
fnetion with [0.0....0] as the initial agreement point. For
the case of MM/ quenes the convexity and compactness of
the set of achievable powers over the set of feasible l||1'|)|lg|1-
puts Das Leen <shown o (6] N network ol 1wo quenes in

Canndern s analy sed i the next paragraph.

Example: Consider the network of figure Lo where S oand
Sooare the thronghiputs of users I and 2 respectively and
o atnd 'y Aate the t‘||l;ll'i|i(’h ol links | and 2. ()!)\'iull.\'{\'
< N < epand D€ S+ So < oo [n higure 20 the set
ol thronghputs. where the products of powers s a concave
finction. is plotted surrounded by a shaded area that covers
the space of adinssible throughputs (¢p = 0.5, ey = 1.0).
Two particiular examples of the product of powers as a fune-

tion of the thronghpur of user | are shown in figures 3 and

Lo figure 30 ¢ = 050 o = 1 and Sy = 0.3, corre-
sponding to a concave product of powers function. In fig-
ure dooep = 090 0 = 1 and Sy = 0.5, corresponding 1o

a nouconcave product of powers [unction. By using the
fact the product of powers is unimodal, ascent algorithms
were used to compute the maximal point.  An iteralive
algorithim whose fixed point is the Nash Equilibrium was
asedd for the caleulation of the Nash Equilibrinm [24]. 1o
fienre H. these points are plotted in the space of powers.
For the point (S7,55) = (0.1995,0.3346) the product of
powers is Y = Pi(STOS)) x F(S5T.5)) = 56812 x 10-4

83) = 3.644 x 1072

and the individual powers are P(S7

Py(S.83) = 15589 % 10=1. For the Nash equilibrium
point (SFH.SF) = (0.2692,0.3564) the product of powers
is Pt = P|(8].53) x Py(SF,5F) = 5.1689 x 1073 and
the individual powers are Pl(S?',."w'j) = 3.8057 x 1072
l"-_;(."\'r.."';) = 1.3582 x 107" It should he noted here

that the point which maximizes the product of powers corre-
sponds to an arbitration point with initial agreement point
(0,0). If we had started from the Nash equilibrium as the
initial agreement point we would have reached a point with
larger powers for both users than the ones at the Nash equi-
librium point.

3.0 CONCLUSIONS

In this paper we have presented a precise mathematical
formulation and characterization of the issue of the design
criteria for network optimal flow control and the related is-
sue of fairness. By using the game theoretic framework, we
have identified the Nash arbitration scheme as a desirable
optimal, lair operating point for the individual users. Fur-
thermore, the strategy can be obtained by only knowing the
individual user performance criteria. We have provided a
prool of why the product of powers is indeed a reasonable
design eriterion and shown some new convexity properties
ol the power function and user delay functions. The concept
was applicd to a simple network of two queues in tandem,

These results conld be thought of as the first concrete

attemipt at providing a mathematical basis for optimal flow
control and fairness in the network context. An important
s which avises is the design of decentralized algorithms
o achieve these operating points and the extension of these
ideas to the general environiment where there is mixed tyvpe
ol trallic.
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Fig. 3 Graph of product of powers for ¢; = 0.5, ¢g =
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