
PBS: A Unified Priority-Based Scheduler ∗

Hanhua Feng
Dept. of Computer Science

Columbia University
hanhua@cs.columbia.edu

Vishal Misra
Dept. of Computer Science

Columbia University
misra@cs.columbia.edu

Dan Rubenstein
Dept. of Electrical Engineering

Columbia University
danr@ee.columbia.edu

ABSTRACT
Blind scheduling policies schedule tasks without knowledge
of the tasks’ remaining processing times. Existing blind poli-
cies, such as FCFS, PS, and LAS, have proven useful in net-
work and operating system applications, but each policy has
a separate, vastly differing description, leading to separate
and distinct implementations. This paper presents the de-
sign and implementation of a configurable blind scheduler
that contains a continuous, tunable parameter. By merely
changing the value of this parameter, the scheduler’s pol-
icy exactly emulates or closely approximates several exist-
ing standard policies. Other settings enable policies whose
behavior is a hybrid of these standards. We demonstrate
the practical benefits of such a configurable scheduler by
implementing it into the Linux operating system. We show
that we can emulate the behavior of Linux’s existing, more
complex scheduler with a single (hybrid) setting of the pa-
rameter. We also show, using synthetic workloads, that the
best value for the tunable parameter is not unique, but de-
pends on distribution of the size of tasks arriving to the
system. Finally, we use our formulation of the configurable
scheduler to contrast the behavior of various blind sched-
ulers by exploring how various properties of the scheduler
change as we vary our scheduler’s tunable parameter.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Performance attributes;
F.2.2 [Nonnumerical Algorithms and Problems]: Se-
quencing and scheduling; G.3 [Probability and Statis-
tics]: Queueing theory

General Terms
Measurement, Performance, Experimentation, Theory

∗This work was supported in part by NSF grant CNS-
0615126 and research gifts from Microsoft and IBM.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMETRICS’07, June 12–16, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-639-4/07/0006 ...$5.00.

Keywords
PBS, FCFS, LAS, Queueing systems, Scheduling, Linux

1. INTRODUCTION
The performance of a system that must simultaneously

process multiple tasks depends in large part on the schedul-

ing policy, whose role is to decide how and when to process
the various tasks waiting for service. Scheduling policies
for operating and network systems have been studied for
many years for a wide variety of demands that can occur
in practice. The types of demands can vary considerably.
For instance, multimedia applications require a predictable
level of service to maintain a smoothness in their playout. In
contrast, computer games require responsiveness, while ma-
chines used to perform general computations require small
waiting times to completion.

One basic conclusion to be drawn from prior work is that
one must take into account the type of demand the system
is expected to handle when trying to find a good scheduler.
Unfortunately, in practice, systems are often expected to
handle a wide variety of demands, complicating the task
of finding the “right” or “best” scheduling policy for that
system. For instance, the scheduling policy in the Linux
operating system is constantly changing throughout the 2.6
versions. We conjecture that these changes are attempts to
tune the scheduler to do a “good” task across the constantly
changing demands that an operating system is expected to
face. There are many reasons why an operating system must
work well for a large variety of demands. We present two
possible reasons out of many:

• Workload characteristics change. A server may be used
at one time as dedicated Linux firewall, processing many
small tasks, and later be used as a computational server,
processing a few long tasks. Even when a server’s ba-
sic function is not altered, the workload it receives may
change because it runs a new application. For instance,
it is well-known that the installation of P2P file-exchange
applications drastically changes a machine’s workload[11].

• Performance needs vary. The same version of operat-
ing system is often used within a user’s personal desk-
top, where responsiveness is required, in a server, where
high processing throughput is paramount, and in a real-
time processing system, where the percentage of real-time
tasks that finish before their deadlines is the measure of
interest [16].

This paper focuses specifically on the class of scheduling



policies that are blind. A blind scheduler is a scheduler that
cannot use tasks’ remaining processing times when schedul-
ing tasks for processing. The scheduler can, however, utilize
other attributes of a task, such as its arrival time and pro-
cessing received thus far. First-Come First-Serve (FCFS),
which prioritizes tasks according to their arrival time, Pro-
cessor Sharing (PS), which splits processor share equally
across all current tasks, and Least Attained Service (LAS)
(also known as Foreground-Background Processor Sharing,
FBPS and Feedback, FB) which prioritizes tasks that have
received the least amount of service [24] are all examples of
blind scheduling policies. Not only is the performance of
these blind scheduling policies well-studied in theory [15],
they are also widely implemented in today’s networks and
operating systems [27, 4]. In fact, almost all general-purpose
operating systems such as Windows and Unix utilize blind
scheduling policies. The reason for selecting blind schedul-
ing policies stems from the availability of the task size infor-
mation: operating systems often do not know a priori the
entire processing demand of its active tasks, and networks
frequently transport flows whose total size is unknown prior
to completion.

Generally, each blind scheduling policy described in liter-
ature or used in practice has a description and implementa-
tion that is distinct from the other policies. Hence, to enable
a system to gracefully adapt or tune to the current specific
needs of the system, the system design would have to sepa-
rately implement and maintain the various policies. Though
this solution is viable, the additional maintenance expense
makes it less practical, and (to our knowledge) is rarely done.
More importantly, it is only possible to implement a discrete
set of policies in this manner, and there are limited guide-
lines for how and when to use or switch between the various
policies, or how to design a good hybrid policy (e.g., a policy
in which tasks arriving earlier should receive greater share,
but not exclusively, as is done by FCFS). Only very recently
are people interested in developing configurable or parame-
terized scheduling policies [14, 18, 13].

This paper presents a configurable policy, named Priority-

based Blind Scheduling (PBS for short), prioritizing tasks
on not only their service received thus far but also their
stay time in the system. PBS unifies a few common blind
scheduling policies under a single umbrella and is easily
tuned to accommodate for variations in demand. The pol-
icy contains a single tunable parameter, α, which, when set
to specific values, enables the scheduler to closely approxi-
mate a number of well-known blind policies. Furthermore,
the parameter can be set to any (in theory continuous) pos-
itive value, creating a smooth transition from one standard
policy to another. This smooth transitioning also enables
a continuum of hybrid policies that mix the various bene-
fits of the well-known policies between which they lie. The
unifying property of PBS provides theorists with a new tool
to compare and contrast various (existing or novel) blind
scheduling policies and, at the same time, provides prac-
titioners with a more flexible scheduler that can be tuned
on-line to optimize for current demands. Briefly, the contri-
butions of this paper are:

• a description of PBS and its tunable parameter, α,

• simulation results demonstrating the ability of the sched-
uler to emulate or approximate both standard policies as
well as their hybrids,

• analysis of the behavior of this blind scheduler as a func-
tion of α, giving a unified treatment of existing and novel
(hybrid) blind scheduling polices, contrasting these poli-
cies’ trade-offs in terms of performance and fairness,

• an implementation of PBS within a current Linux operat-
ing system that emulates its (significantly more complex)
scheduler, and

• experiments using synthetic workloads to demonstrate
that to minimize expected response time, the optimal
value of α depends strongly on the distribution of task
sizes, thus reaffirming the assertion that there is no single
α to rule them all. Different scenarios require a different
(hybrid) scheduler.

For our analytical contributions, we show that PBS ap-
proximates FCFS, PS, and LAS when its parameter, α, is
respectively tuned (in the limit when applicable) to 0, 1,
and ∞. We identify various theoretical properties of PBS
that hold under different ranges of α. For instance, we
prove that, as α increases, mean response time decreases
(increases) for decreasing(increasing)-hazard-rate task-size
distributions. In other words, for heavy-tailed tasks, by in-
creasing α a system will further reduce the expected time to
complete tasks, whereas decreasing α is desirable for light-
tailed tasks. We show that, as this α increases, the vari-
ation of received service reduces, as does the total service
received by tasks that arrive earlier. We also show that the
novel hybrid policies that we propose overcome pathological
problems of FCFS and LAS such as starvation, while at the
same time approximating the desired behavior under normal
conditions to an arbitrary degree of precision.

For our practical contributions, we show, using two differ-
ent synthetic workloads, that different values of α in these
two settings to minimize expected response time of arriv-
ing tasks. This result demonstrates the potential benefit
of a tunable scheduler: the scheduler is not tied to a fixed
policy, and if task sizes are not known, but the general dis-
tribution is known or can be estimated, it should be possible
to add a control loop to tune α to minimize response time for
those arrivals. The monotonicity property of response time
with respect to α, given general properties of a task size dis-
tribution, indicates the problem of designing a well behaved
controller should be feasible. We also describe the challenges
and additional issues that arose as we transitioned PBS from
a policy “in theory” to a practical Linux environment.

1.1 Related work
Although the PBS falls in the general framework proposed

by Ruschitzka and Fabry [23], the prior analytic work on
blind schedulers handles different policies in isolation. In
[8], Coffman et al. study the PS policy and compare it
to round robin. PS is extended in to Generalized Proces-
sor Sharing (GPS) [19] and Discriminated Processor Shar-
ing (DPS) [9] to support weighted sharing. See Caprita
et al. [7] for a more complete list of GPS variants and im-
plementations. The LAS/FBPS/FB policy is first studied
by Schrage [24], but has received significant recent atten-
tion for the case where the task sizes have a large coefficient
of variation [20]. Several other blind scheduling policies,
such as multi-level feedback-queue scheduling (MLFS) [27],
Multi-level Processor-Sharing (MLPS) [15] and its special
cases [1], and Preemptive Last-Come First-Serve (PLCFS)
[2] have also been studied. For the sake of completeness,



we note that there is a significant body of work that studies
non-blind policies. For instance, Schrage and Miller analyze
the Shortest Remaining Processing Time (SRPT) policy and
Shortest Jobs First (SJF) policy [26, 25]. Few parameterized
scheduling policies are studied in the literature, including
the early work by Mitrani and Hine [17]. Recently, Kherani
and Núñez-Queija study TCP in relation to a parameterized
scheduling policy based on attained service time, and the
continuous version of this policy is subsequently analyzed
by Padhy and Kherani [18], and Kherani [13]. Wierman
et al.[29] analyze a class of non-blind policies, although this
class is not parameterized.

Though much of work focuses on minimizing expected
task response time, we are also concerned with other mea-
sures of performance. Here, we follow ideas such as those in
Wierman and Harchol-Balter [28] and Raz et al. [21] who
respectively classify various policies in terms of an unfair-
ness criterion, and propose the resource-allocation queueing
fairness measure (RAQFM).

This paper is organized as follows. In Section 2 we de-
scribe our general scheduling policy and illustrate its be-
havior with simulation results. In Section 3 we study sev-
eral properties of this policy, and analyze the monotonicity
of this policy with respect to the parameter, in terms of
mean response time and a few kinds of fairness. In Sec-
tion 4 we present our implementation of this policy in the
Linux kernel, discuss a few practical issues and extensions,
and demonstrate some experiment results. We conclude in
Section 5.

2. THE PBS POLICY
In this section, we describe our configurable, priority-

based blind scheduling policy in the context of a single-
server queueing system. The system processes tasks, which
we number sequentially as they arrive to the system. Task i’s
arrival time is denoted τi, where i < j implies that τi ≤ τj .
When i < j, we say that task i is older than task j, and j is
younger than i. The total number of arrivals up to time t is
denoted by the counting process ν(t).

The sojourn time ti(t) = t−τi denotes the amount of time
that task i has existed in the system by time t. The attained

service time xi(t) is the total processor time allocated to
task i during time interval [τi, t]. The processor is work-
conserving with a uniform processing speed, i.e, the total
attained service time of all tasks,

S(t) :=

ν(t)
X

i=1

xi(t),

is invariant with respect to the scheduling policy, and in-
creases with a slope of one when the system is busy and
zero otherwise. Since ti(t) grows linearly in time at rate 1
for a task i, and since xi(t)’s growth rate is bounded above
by 1, we have that xi(t) ≤ ti(t) for all i, t.

Each task has a required service time (or task size) of Xi.
The definition of a blind policy precludes the policy from
using the values of Xi to make scheduling decisions, i.e.,
one can think of this constraint in practice as the system not
knowing Xi until the task i receives all necessary processing
(and departs). Let τd

i = inf{t : xi(t) = Xi} be the departure
time of task i, which is when it finishes all its service and
leaves the system. After its departure, the attained service
time of a task no longer changes, i.e., xi(t) = Xi for all

t ≥ τd
i . We say a task i is active or in the system when it is

either waiting for or receiving processing. Note that task i
is active during and only during the interval [τi, τ

d
i ].

2.1 PBS
A scheduler’s basic function is to decide, at any time t,

what active task(s) should be processed by the system at
that time. The approach in PBS is to associate a time-
varying priority function with each active task. The general
form of PBS’s priority functions are Pi(t) = g(ti(t), xi(t)),
meaning that they depend only on the sojourn time and
attained service time of a task at that time t. Note the lack
of dependence on Xi ensures that the scheduling policy is
indeed blind. In this paper, we focus on the specific priority
function:

Pi(t) =
ti(t)

[xi(t)]α
, (1)

where α is a tunable (constant) parameter between 0 and
+∞.

At time t, the scheduler runs active tasks j(t) with maxi-
mal priority value in the system,

j(t) = arg max
i∈A(t)

ti(t)

[xi(t)]
α ,

where A(t) := {i : 0 < i ≤ ν(t), τi ≤ t ≤ τd
i } is the set

of tasks in the system. If two or more tasks tie as maxi-
mum, an arbitrary task is picked. When we analyze PBS in
a continuous setting where time slices are infinitesimal, this
prioritization scheme translates to a processor that instan-
taneously shares its processor among all tasks with highest
priority. Note, however, that the share is not necessarily
equal as will be discussed later in the paper.

Surprisingly, this simple formulation in terms of sojourn
time, attained service time, and α enables PBS to emulate or
closely approximate several standard blind scheduling poli-
cies:

• FCFS: As α approaches 0 from above, PBS becomes less
sensitive to attained service time. At α = 0, if we assume
00 = 1, then Pi(t) = ti(t), and the earliest arriving task
has highest priority, i.e., first-come-first-serve.

• LAS: As α tends to ∞, PBS becomes less sensitive to
sojourn time, i.e., [xi(t)]

−α dominates the priority value,
and the scheduler selects the task with the smallest at-
tained service time, i.e., least-attained-service.

• PS: When α ∼ 1, the priority value of a task is the ratio of
sojourn time to attained service time. This ratio is called
slowdown [28], whose reciprocal is the processor share
aggregated over the task’s sojourn time. At α = 1, the
PBS policy tries to maintain an equal slowdown among
all tasks by scheduling the one with least aggregated pro-
cessor share. In this case, its behavior converges as tasks
age to PS, but is not strictly identical, unless all tasks
have identical arrival time τi. Instead, PBS with α = 1
has a desirable property that, along every sample path,
tasks are scheduled according to their relative slowdown.
This means that younger tasks are given a larger frac-
tion of the processor when they become active, and this
fraction quickly diminishes to match that of older tasks.

• Mixture of the above policies. By varying α continuously
from 0 to +∞, we are able to construct an infinite series
of scheduling policies that transition in behavior between



More slowdown fairness

FCFS LAS

More slowdown fairness

More seniority fairness

more attained service fairness

more preference to small jobs

close to PS

α = 0 α = 1 α = ∞
α

Figure 1: Variation of the PBS policy behavior.

the FCFS, PS and LAS policies; as we increase α, the be-
havior of the PBS policy changes smoothly: two policies
slightly differing α will have similar, but not necessarily
identical schedules for a sample set of arrivals.

• Other well-known blind polices and mixtures. If we utilize
a slightly different priority function of sgn(α)ti(t)/[xi(t)]

α,
where sgn(α) is the sign of α, the domain of α can be use-
fully extended to the entire real set. In other words, for
α < 0, the scheduler chooses the task with minimum pri-
ority ti(t)/[xi(t)]

α instead of the maximum. Under this
extension, PBS converges to the preemptive last-come
first-served (PLCFS) policy as α tends to 0−, and as α
tends to −∞ PBS converges to the LAS policy. Hence,
with a decreasing α, we can construct a series of schedul-
ing policies that make smooth transition from the PLCFS
policy to the LAS policy. Further discussion of this alter-
nate priority function is beyond the scope of this paper.

Figure 1 provides a high-level overview of the fairness
properties one can expect from PBS as a function of α. As α
shifts, the policy becomes more fair in terms of one fairness
criterion but less fair in terms of another. Hence, the abil-
ity to choose α gives the system the ability to decide how
to trade off these various types of fairness for its current
workload.

An alternate way to view the priority function (which in
fact reduces its complexity in an implementation) is to take
the logarithm of the original priority function in (1):

pi(t) ≡ log Pi(t) = log ti(t) − α log xi(t), (2)

where the base-2 logarithm is used in our implementation.
Since an inequality still holds when the log is taken on

both sides, switching from Pi to pi does not alter the schedul-
ing behavior of PBS. This formulation also reveals that PBS
is invariant to the units with which sojourn and attained
service times are measured (the scaling of the unit simply
factors out as an additive constant, which can be canceled
on both sides when comparing two tasks’ priority functions).

2.2 Behavior of the PBS policy
Now we illustrate the behavior of the PBS policy with

some simulation results and briefly describe and demon-
strate how the PBS policy schedules tasks, as shown in Fig-
ures 2 and 3. These figures show how the processor is shared
among a set of arriving tasks over time for various values of
α when the time slices are infinitesimal. In these figures,
time increases along the x-axis, with this axis annotated at
the top of the figure. A separate simulation is run for each
value of α considered, with each multi-colored rectangular
box representing a simulation with a fixed value of α. The
coloring denotes the fraction of processor each task in the
system receives per instant in time (e.g., task 1 always ini-

0 1 2 3 4 5 6 7 8 9 10 11 12

(Time: seconds)
1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1

2 3 4

1
2 3 4

1
2 3 4

1
2 43

1
2 3 4

1
2 3 4

1
2

1
32

1 1 1
2

3

1

1 1 1

2
1

2 2
3

1

2

2 31 4

1 2 3 4

1

1

1

1

1

43
2 1

3
2 4

342

342

3

2

4

4

2

3

2

3

α = 0.1

α = 0.5

α = 0.9

α = 1

α = 1.5

α = 2

α = 0.01

α = 100

Figure 2: Illustration of processor share that each
of four tasks obtains in a 12 second interval.

tially receives the entire processor, and later, relinquishes
some or all of the processor to task 2). For each value of α,
tasks i = 1, 2, 3, 4 respectively arrive at times τi = 0, 1, 3, 5
and have respective task sizes Xi = 4.5, 2.5, 3, 2. One can
visually see the change in how the processor is shared, and
the change in response times (arrows under the box) as α is
varied.

Before exploring the behavior as a function of α, we wish
to point out some general observations:

• By using infinitesimal time-slices, we can view the system
as fractionally sharing the processor at any time t. As a
system with discrete-sized time slices reduces the size of
its slice, an average of the utilization of the processor by
tasks within a small, discrete-sized slice will approximate
to the fractions seen here.

• Note that for multiple tasks to share the processor at
any time t, their priorities must both be maximal, and
hence equal. Note also that often these multiple tasks
continue sharing the processor, such that their priorities
remain equal over time. Finally, note that since in many
instances they receive different-sized fractions of the pro-
cessing, these tasks’ priorities are kept even by giving
them different fractions of the processor.

For a simple intuition as to how this can happen, consider
two tasks 1 and 2 scheduled by a PBS system with α = 1.
Assume these tasks have different arrival times τ1 < τ2,
but have an equal priority at some point in time t. We
can write their respective priority functions at this time as
P1 = t1/x1 and P2 = t2/x2, where P1 = P2. If, during



0 1 2 3 4 5 6 7 8 9 10 11 12

(Time: seconds)32 4 51

4
5

1

1

1

1

3

5
4

3
2

2 3
4

5

1

4

3 3

2 3 4

3
12 2 2

α = 0.4

α = 1

α = 2

Figure 3: A persistent task sees four new arrivals
and gets service interruption.

a short interval of time ∆t, both tasks are given half of
the processor, their priority functions change value to (t1 +
∆t)/(x1+0.5∆t) and (t2+∆t)/(x2+0.5∆t). Note that P1 =
P2 does not imply that the changed values remain equal.
Hence, if the priorities are to remain equal over time, the
fraction of processor allocated to each task is not necessarily
equal.

Let us now informally explore the behavior of PBS as a
function of α with Figure 2 guiding the discussion:

• For α < 1, an task arriving to the system with a busy pro-
cessor does not claim the entire processor. For α closer
to 0, it gets close to no processing upon initial arrival,
but also does not preempt any of its fraction to subse-
quent arriving tasks (like FCFS). As α moves toward 1,
its initial fraction grows, at some point even surpassing
the fraction of existing tasks in the system.

• For α > 1, a new task immediately occupies the whole
processor, preempting all existing tasks. Later on, the
task will have to share the processor with the older tasks,
and will get preempted by subsequent task arrivals. As α
moves downward toward one, the rate at which the new
task gives up its fraction of the processor increases. For
large α, the behavior is effectively LAS, i.e., the task with
the least service thus far gets all the processor, and those
tied for least service share the processor equally.

• For α = 1, as described earlier, an arriving task initially
gets more than 1/N of the processor when there are N
tasks in the system, but over time, its portion converges
to 1/N , barring adjustments due to new arrivals.

Figure 3 shows arrivals of five persistent tasks (Xi = ∞)
arriving at times τi = 0, 2.5, 3, 3.5, 4 s. What is interesting
to note is the share of processor received by the first arriv-
ing task. With α = 0.4, its share slowly declines to almost
nothing and then slowly increases to an equitable share. For
α = 1, its share drops substantially upon the next arrival,
and then to 0 after the third arrival, until a rather large
chunk of time passes. For α = 2, the first task immediately
loses its entire share, getting it back only later. The impor-
tant observation to make is that in the long-term, as time
goes to infinity, all tasks will wind up with an equal share
of the processor.

A related parameterized policy is recently proposed by
Padhy and Kherani [18, 13], and its discretized version is
studied earlier by Kherani and Núñez-Queija [14]. This pol-
icy is a discriminated processor-sharing (DPS) policy [9] in
which task i’s weight equals to xα

i where xi is the attained
service time and α is the policy parameter. In contrast, the

PBS policy uses a priority function (tasks with highest prior-
ity values preempt all other tasks), and explicitly considers
sojourn time, using the parameter α to trade off favorability
towards the arrival time and towards small job sizes. Com-
paring both policies, it is interesting to see that, although
the PBS policy uses priority instead of weights, the involve-
ment of sojourn time results in a time-sharing scheme as a
DPS policy can (Figures 2 and 3). On the other hand, the
PBS policy may interrupt the service of low-priority tasks,
whereas in general all tasks get a share of processor at all
time under a DPS policy, except in the extreme cases with
zero and/or infinite weights.

The next two sections of this paper can be read in either
order, as one does not depend on the results of the other.
Section 3 provides further analysis of PBS and its properties
for various α, while Section 4 describes our implementation
and results demonstrating the practical value of PBS.

3. ANALYSIS OF THE PBS POLICY
In this section, we elaborate more formally on the various

properties of PBS. We begin by identifying (and proving
when applicable) a number of desirable properties of the
policy for interval ranges of α. We then focus on attained
service time and mean response time, and explore first and
second order behavior of these measures as a function of α
and their underlying distribution.

As in much of Section 2, we assume that time slices are
infinitesimally small, such that all tasks with the maximal
priority at time t share (possibly unevenly) the available
processor. We say each task gets an equal share if its pro-
cessor share is 1/N(t) where N(t) := |A(t)| is the number
of tasks in the system.

A task in the system is called scheduled at time t if it
receives a positive processor share immediately after t, or in
other words, its attained service time is strictly increasing at
t. More rigorously, it means that this task receives a positive
amount of processing time in the time interval [t, t+ǫ] for any
positive ǫ. Note that all scheduled tasks have an identical
priority value, which is greater than those of non-scheduled
tasks. If a scheduled task becomes non-scheduled after time
t, we say that this task gets a service interruption.

3.1 Properties of the PBS policy
We now investigate the detailed properties pertaining to

the PBS policy. These properties may provide a rough idea
on what tasks are scheduled with how much processor share
granted, at any time t. Some important properties referred
later are stated as theorems with names given.

3.1.1 Properties for all 0 ≤ α < ∞

Changes in priority with time: A non-scheduled task
in the system has a linearly increasing priority value for
α < ∞. The processor time is (probably unequally) shared
by all scheduled tasks whose priority values remain the same
as one another, and greater than all other non-scheduled
tasks. These priority values can either increase sub-linearly
or decrease.

Older gets more (basic fairness): If i < j then xi(t) ≥
xj(t) for all t ∈ [τi, τ

d
i ]∩ [τj , τ

d
j ]. In other words, at any time

such that two tasks are both active, the earlier arriving task
has never received less service, as stated in the following
theorem.



Theorem 3.1 (basic fairness). Under PBS, if i > k,

xi(t) ≤ xk(t) for any time t such that i, k ∈ A(t), i.e., both

tasks are in the system.

Proof. For α = 0 (FCFS), the priority value is the so-
journ time. If i > k (task k is older), task i does not get ser-
vice as long as task k is in the system, i.e., 0 = xi(t) ≤ xk(t).

For α > 0, we prove this by contradiction. Let us hy-
pothesize that xi(t) > xk(t) for some t, and some i, k such
that 0 < k < i ≤ ν(t). Since xk(τi) ≥ xi(τi) = 0 and both
xi(t) and xk(t) are non-decreasing continuous functions of
t, there must be a t such that xi(t) is strictly increasing (i.e,
xi(t + ǫ) > xi(t) for any sufficiently small ǫ). 1 In other
words, the task i is scheduled at t, i.e., ti(t)/[xi(t)]

α ≥
tk(t)/[xk(t)]α. However, as a contradiction, for all t such
that xi(t) > xk(t), we get that ti(t)/[xi(t)]

α < tk(t)/[xk(t)]α

since ti(t) ≤ tk(t) and α > 0. Thus, i has strictly lower pri-
ority at time t and would not be scheduled, contradicting
the growth of xi(t) between time t and t + ǫ.

3.1.2 Properties for all 0 < α < ∞

If we exclude the strict FCFS policy from the spectrum of
PBS policies, a number of other beneficial properties hold:

Immediate Service / No infinite priorities: Upon
arrival, a new task is immediately scheduled (i.e., every task
i gets a positive amount of processing time during interval
[τi, τi+ǫ) for any ǫ > 0, ). This can be seen by contradiction:
priority can only be ∞ when xi(t) = 0, so if Pi(τi + ǫ) = ∞,
then Pi(τi + ǫ/2) = ∞ as well. Because the system is work-
conserving and i is active, at time τi + ǫ/2, some task must
have received a positive share of processing, and this task’s
priority would clearly have dropped to a finite value by time
τi3ǫ/4. Hence the number of tasks with infinite priority
reduces by 1 before reaching time τi + ǫ. Repeating this
argument for all tasks that are active within the interval
τi, τi + ǫ, we can find a time before τi + ǫ where task i is the
only task with infinite priority and hence should have been
scheduled prior to τi + ǫ. It also follows from this proof that
for this range of α, tasks never have infinite priorities after
its arrival.

Arrivals (Departures) instantaneously decrease (in-
crease) scheduled tasks’ shares: since new arrivals re-
ceive immediate service, every scheduled task should experi-
ence an instantaneous decrease of processor share after the
arrival of a new task, compared to the scenario without this
new arrival, because the new arrival receives service immedi-
ately, and the processing time is taken from every scheduled
task. Note that for very small α, the decrease may be very
small, but it is always non-zero. Similarly, after a task de-
parts, all other scheduled tasks experience an instantaneous
increase of processor share.

Processor share: The processor share at time t of task
i, as illustrated in Figures (2) and (3), is defined as x′

i(t),
the right-derivative of attained service time at time t. Note
that we have 0 ≤ x′

i(t) ≤ 1. This quantity is zero, if a
task is not scheduled. If a task is scheduled, the derivative

1If g(·) is a continuous function with g(τ) ≤ 0 and positive
at some point later on, we can surely find some t > τ such
that g(t) > 0 and d+g(t)/dt > 0 if g is right-differentiable, or
more generally g(t+ǫ) > g(t) > 0 for any sufficiently small ǫ.
Here g(t) := xi(t)−xk(t). We shall use this argument again
and again in this paper. If g(t) is differentiable everywhere,
this argument corresponds to the mean value theorem in
calculus.

of attained service time can still be zero provided that the
attained service time strictly increases at t. If two tasks, i
and k, i < k, are both scheduled, they should have the same
log-priority value:

log ti(t) − α log xi(t) = log tk(t) − α log xk(t).

Taking the derivative we get

x′
i(t)

xi(t)
−

x′
k(t)

xk(t)
=

1

α

„

1

ti(t)
−

1

tk(t)

«

, (3)

noting that ti(t) and tk(t) are linear functions of t. The
right-hand side of (3) is positive for α > 0 if task i is younger
than task k. Then we get

x′
i(t)

xi(t)
>

x′
k(t)

xk(t)
. (4)

Equations (3) and (4) describe the way that the PBS policy
allocates processor share to each of the scheduled tasks.

Hospitality: If tasks i and j, i < j, are active at time
t and x′

i(t) > 0, then x′
j(t) > 0. In other words, if a task

is scheduled, all the active tasks that arrived later than this
task also get scheduled. This property is proved by showing
that younger tasks always have higher priority than older
ones.

Theorem 3.2 (hospitality). Under PBS with α > 0,
if i > k, Pi(t) ≥ Pk(t) for any time t such that i, k ∈ A(t).

Proof. Let us hypothesize that i > k and Pi(t) < Pk(t)
for some t. By definition of the PBS policy and continuity
of both Pi(t) and Pk(t), task i is not scheduled, i.e., x′

i(t) =
0, and we get P ′

i (t) = [xi(t)]
−α. No matter scheduled or

not, we have P ′
k(t) = [xk(t)]−α − αtk(t)[xk(t)]1−αx′

k(t) ≤
[xk(t)]−α. By Theorem 3.1(basic fairness) we have xi(t) ≤
xk(t) and from (1) we get that P ′

i (t) ≥ P ′
k(t) for every t

such that i, k ∈ A(t) and Pi(t) < Pk(t).
On the other hand, with α > 0, Pi ≥ Pk just after its

arrival because it receives immediate service. Since Pi(t)
and Pk(t) are right-differentiable and continuous, there must
be a time t such that P ′

i (t) < P ′
k(t), based on the hypothesis

Pi(t) < Pk(t), using the same argument as in the proof of
Theorem 3.1. This causes a contradiction, and hence we
always have Pi(t) ≥ Pk(t) for time t such that both tasks
are in the system.

Convergence to PS: The PBS policy converges to a
PS policy in a long run. Consider several persistent tasks
and assume after time t, there are neither new arrivals nor
departures. By Theorem 3.2 (hospitality), while an older
task is not scheduled, all processing time is given to tasks
younger than it. This older task must get scheduled at some
time, otherwise sooner or later Theorem 3.1 (basic fairness)
will be violated. Therefore, eventually all non-scheduled
tasks become scheduled. Then we can look at (3) with
two scheduled tasks i, k. The right-hand side of (3) con-
verges to zero as ti(t) and tk(t) tends to ∞, and we obtain
x′

i(t)/xi(t) ≈ x′
k(t)/xk(t). Then,

x′
i(t)

x′
k(t)

≈
xi(t)

xk(t)
=

„

ti(t)

tk(t)

«1/α

→ 1 as ti(t), tk(t) → ∞,

where the second equality is because the priority values of
tasks i and k are same, and the limit of one is because ti(t)−
tk(t) is a constant. This result means that the PBS policy



will converge to an equal share configuration (i.e., processor
sharing), as long as α > 0, no matter how small or large
the α is. Note that, for α tends to ∞, it is well known that
LAS will eventually become PS if there is neither arrival nor
departure (for this reason it has another name Foreground-
Background Processor-Sharing, FBPS).

No permanent starvation: Here, we consider the star-
vation problem in a system with a fixed number of users.
After having fully received service, each user has non-zero
think time before submitting his/her next request of ser-
vice. Although the system is stable in terms of the number
of tasks, there are two kinds of starvation. This first kind
of starvation is produced under FCFS: if one user submits a
task that fails to end, all subsequent tasks submitted by oth-
ers are starved. The second kind of starvation is produced
under LAS (as well as under MLFS): if two users frequently
submit small tasks, a long task submitted by a third user
will never get to finish. Under the PS policy, both situations
will not result in starvation. Now we consider the PBS pol-
icy with 0 < α < ∞. For the FCFS kind of starvation,
we note that no task is starved by a persistent task, as we
have shown previously that all tasks will eventually reach an
equal share for α > 0. For the LAS kind of starvation, since
the priority value of a non-scheduled task linearly increases
towards infinity and eventually exceeds all short tasks sub-
mitted by other users, this task is not permanently starved.
However, in order to prevent other users from submitting
smaller and smaller tasks to get higher and higher priority,
we may impose a lower bound for task sizes on all users. A
further discussion is shown in our technical report [10].

Although permanent starvation is avoided, a moderately
long term starvation is still possible with very small or large
α. Therefore, during implementation, it is necessary to ap-
ply a greater-than-zero lower bound and a less-than-infinity
upper bound to α. The lower bound is more important be-
cause the FCFS kind of starvation is much more common.

3.1.3 Properties for α ≥ 1

No surprising interruption: If x′
i(t) > 0 and no tasks

arrive in the interval [t, t0], then either xi(t0) = Xi or x′
i(t0) >

0. In other words, during any period in which no new
tasks arrive to the system, all scheduled tasks remain sched-
uled unless they complete (i.e., they do not become non-
scheduled). We justify this property in our technical report
[10]. This property need not hold for 0 < α < 1,as is shown
in Figure 3 with α = 0.4. (The task #1 becomes non-
scheduled at 5 s.)

3.1.4 Properties for α > 1

Quick start: x′
i(τi) = 1: A newly arriving task takes

all the processor at its time of arrival. This is shown by
contradiction. Suppose the claim is false and consider time
t = τi + ǫ for a positive small ǫ. Since the task did not get
the total processor during this time interval, it received an
amount of processing δ < ǫ. At time t, the priority value of
task i is then ǫ/δα. We have ǫ/δα > δ/δα = δ1−α. Shrinking
δ (by shrinking ǫ and maintaining δ < ǫ), we see that the
priority value of task i is unboundedly large (finite though)
and can dominate all other existing task priorities. In other
words, a new task gets very high priority and remains as
the highest for a while after their arrival until they receive
enough service, and thus they will interrupt the service of
all existing scheduled tasks.

3.1.5 Properties for α < 1

Slow start: If there exists task j, j < i, that is still ac-
tive at time τi, then x′

i(τi) = 0: The proof setup is similar
to above. Suppose for every ǫ, the amount of processing re-
ceived by i by time τi + ǫ is 0 < δ ≤ ǫ. The priority value of
task i is ǫ/δα ≤ ǫ/ǫα = ǫ1−α. Shrinking ǫ, this quantity be-
comes unboundedly small, meaning that the processor share
of a task is zero on its arrival and very small just after its
arrival, therefore it could not interrupt the services of other
tasks immediately.

3.2 Transient analysis with deterministic model
In Section 3.1, to understand how the policy works, we

compare the progress of tasks under PBS with a fixed α.
This comparison, however, does not give any guideline for
tuning the parameter α. In this section and Section 3.3, we
compare the PBS policies with different α’s and analyze how
the performance and fairness change as α changes.

In the beginning of Section 2, we claim the total attained
service by all tasks (including all tasks that have departed),
namely S(t), is invariant with respect to the scheduling pol-
icy, and in particular, invariant with respect to α. Now
before getting into our analysis, a few quantities related to
S(t) are to be defined. Quantity S(t, k) is the total attained
service time by the first k tasks at time t:

S(t, k) :=
k

X

i=1

xi(t), 0 < k ≤ ν(t).

We divide S(t, k) into two portions by a threshold ξ, 0 ≤
ξ ≤ ∞, for the attained service time of every task. The first
portion is to count only attained service of first ξ seconds
of the first k tasks, and the second portion is to count only
attained service beyond the first ξ seconds, i.e.,

S−

ξ (t, k) :=
k

X

i=1

[xi(t) ∧ ξ], S+
ξ (t, k) :=

k
X

i=1

[xi(t) − ξ]+,

where z+ := z ∨ 0 and we use ∧ and ∨ to denote minimum
and maximum, respectively. For the case that k = ν(t), we
use shorthand notations

S+
ξ (t) := S+

ξ (t, ν(t)) and S−

ξ (t) := S−

ξ (t, ν(t))

as S(t) is in fact a shorthand notation of S(t, ν(t)).
By definition we have S(t, k) ≡ S+

ξ (t, k) + S−

ξ (t, k) and

S(t) ≡ S+
ξ (t) + S−

ξ (t). With ξ = 0, we have S−

0 (t, k) =

0 and S+
0 (t, k) = S(t, k), whereas, with ξ = ∞, we have

S+
∞(t, k) = 0 and S−

∞(t, k) = S(t, k).
Now we analyze the PBS policy under two different α’s,

namely α1 and α2 with α1 ≤ α2. The arrival times and
sizes of all tasks are assumed to be fixed (i.e., the system is
deterministic). We add superscripts to those aforementioned
quantities in order to distinguish different policies.

This following theorem states that the total attained ser-
vice beyond ξ of the first k tasks is greater for a smaller
α:

Theorem 3.3. Consider two policies P1 := PBS(α1) and

P2 := PBS(α2). If 0 < α1 ≤ α2 < ∞, then S+
ξ (t, k)P1 ≥

S+
ξ (t, k)P2 , for any t ≥ 0, ξ ∈ [0,∞] and k = 1, 2, . . . , ν(t).

See our technical report [10] for a proof of Theorem 3.3.
The monotonicity of the PBS policy with respect to α is

probably more clearly implied by the following corollaries of



Theorem 3.3. The first corollary states that the PBS policy
assigns more processing time to older tasks at any time if a
smaller α is used, meaning that by decreasing α we increase
the favorability towards the older tasks.

Corollary 3.4. Consider two policies P1 := PBS(α1)
and P2 := PBS(α2). If 0 < α1 ≤ α2 < ∞, then S(t, k)P1 ≥
S(t, k)P2 , for any t ≥ 0 and k = 1, 2, . . . , ν(t).

Proof. Use Theorem 3.3 and set ξ to zero.

The second corollary states that the PBS policy assigns
more service to small tasks at any time if a larger α is used,
meaning that by increasing α we increase the favorability
towards the small tasks.

Corollary 3.5. Consider two policies P1 := PBS(α1)
and P2 := PBS(α2). If 0 < α1 ≤ α2 < ∞, then S−

ξ (t)P1 ≤

S−

ξ (t)P2 , for any t ≥ 0 and ξ ∈ [0,∞].

Proof. Use Theorem 3.3 with k = ν(t), we get S+
ξ (t)P1 ≥

S+
ξ (t)P2 . The corollary follows since S(t) = S+

ξ (t)P1 +

S−

ξ (t)P1 is policy invariant.

The third corollary states that the variance of attained
service time is smaller if α is larger.

Corollary 3.6. Consider two policies P1 := PBS(α1)
and P2 := PBS(α2). Define

σ(t) =
1

ν(t)

ν(t)
X

i=1

»

xi(t) −
S(t)

ν(t)

–2

.

If 0 < α1 ≤ α2 < ∞, then σ(t)P1 ≥ σ(t)P2 , for any t ≥ 0.

Proof. Since ν(t) and S(t) are policy invariant, it is suf-
ficient to prove just for the second moment, i.e.,

ν(t)
X

i=1

h

xi(t)
P1

i2

≥

ν(t)
X

i=1

h

xi(t)
P2

i2

holds. In fact, the preceding inequality follows Theorem
(3.3) due to

ν(t)
X

i=1

[xi(t)]
2 =

ν(t)
X

i=1

Z xi(t)

0

2[xi(t) − ξ]dξ

= 2

Z

∞

0

2

4

ν(t)
X

i=1

[xi(t) − ξ]+

3

5 dξ = 2

Z

∞

0

S+
ξ (t)dξ.

Then the corollary immediately follows.

Remarks on fairness. Aside from traditional perfor-
mance measures such as the response time and throughput,
another concern when designing a scheduling policy is the
fairness of the system. This refers roughly to the individual
experience of a particular task with respect to its peer tasks.
As this “experience” equals out across the various types of
tasks, the system is deemed to be more “fair”. Different fair-
ness criteria have been proposed and analyzed in the recent
past. Possible criteria for comparing scheduling policies are
(in our own terminology): share fairness (the proportion of
processing time allocated to a task at any moment), senior-

ity fairness [21] (the time spent in the system), and slow-

down fairness [28] (the ratio of response time to task size).

Clearly, the PS policy attains the most share fairness, and
the FCFS policy gets the most seniority fairness.

From the corollaries in this section, we can see that the
PBS policy is monotonic in terms of some fairness measures:
Corollary 3.4 implies the seniority fairness gets monoton-
ically improved as α decreases; Corollary 3.6 implies that
the variance of the attained service time monotonically de-
creases as α increases, which can be also considered as a
measure of fairness. We refer to it as attained service fair-

ness. For slowdown fairness, the PBS policy at α = 1, how-
ever, tries to attain the highest slowdown fairness at every
moment. (It always schedules tasks that have the maxi-
mum slowdown so as to decrease it.) Therefore, when α
varies between zero and infinity, the PBS policy is actually
doing a trade-off between seniority fairness, attained service
fairness, and slowdown fairness (as shown in Figure 1).

We defined the “basic fairness” in Section 3.1: the PBS
policy maintains this property that at any time, an older
task is always running ahead of a younger one, as stated by
Theorem 3.1. As each of the PS, FCFS, and LAS policies
satisfies this property, it is not seen in some other scheduling
policies: the PLCFS policy is just on the opposite extreme;
both the Shortest Job First (SJF) and the Shortest Remain-
ing Processing Time (SRPT) policies [26] are certainly far
from compliance. This basic fairness is seemingly contrary
to the “hospitality” property that the younger tasks always
get assigned, as implied by Theorem 3.2. These two proper-
ties and the three corollaries in this section constitutes the
full fairness spectrum of the PBS policy.

The response time of the tasks, however, have not been
addressed. In fact, there is no way to improve the response
time of every task: due to work-conserving principle, favor-
ing small tasks causes a penalty to large tasks, and speeding
up older tasks causes a delay to younger tasks. What we can
do is to improve the response time on average. A stochastic
model is therefore needed for further analysis.

3.3 Stationary analysis with stochastic model
In this section, we assume the task sizes X1, X2, · · · are

independent, identically distributed random variables, with
the same distribution as the random variable X with EX =
1/µ. The cumulative distribution function and the proba-
bility density function of X are denoted by F (·) and f(·),
respectively. We also assume that the arrival process ν(t)
is a stable counting process with a fixed rate of λ. In other
words, we assume a G/GI/1 work-conserving queue.

The response time Ti := τd
i − τd of task i is defined to be

its sojourn time on its departure. Dropping the indices, the
response time is denoted by the random variable T . We are
also interested in the response time conditioned on the task
size x, denoted by Tx. The mean conditioned response time
ETx := E[T |X = x] satisfies that ET =

R

∞

0
ETxdF (x). For

stable queues, the mean response time is equal to the time

average: ET = limt→∞
1

ν(t)

Pν(t)
i=1 Ti. It is well known that

the SRPT policy minimizes ET [25], but SRPT is not blind
and is therefore not applicable to many systems. For a blind
policy, unfortunately, the Kleinrock’s conservation law [15]
states that the quantity K :=

R

∞

0
ETx[1−F (x)]dx is invari-

ant with respect to the policy, and therefore the mean re-
sponse time for exponential distribution is also policy invari-
ant, since in this case 1− F (x) ≡ f(x)/µ = e−µx and hence
mean response time is proportional to Kleinrock’s constant
K. Nevertheless, in many systems, the task size is far from



exponentially distributed. Evidently the task sizes exhibit
a heavy-tailed property in a great portion of the current
computer and network systems [5]. The class of distribu-
tions with decreasing (increasing) hazard rate, DHR(IHR) is
sometimes used to characterize the heavy-tailed(light-tailed)
task sizes [1]: a probability distribution is DHR (IHR) if the
hazard rate f(x)/1 − F (x) is decreasing (increasing).

The following theorem states that for these two classes of
task-size distributions, the mean response time is monotonic
with respect to the policy parameter α.

Theorem 3.7. Consider two policies P1 := PBS(α1) and

P2 := PBS(α2). If 0 < α1 ≤ α2 < ∞, then in a G/GI/1
queue, ETP1 ≥ ETP2 with DHR task-size distributions, and

ETP1 ≤ ETP2 with IHR task-size distributions.

See our technical report [10] for a proof of Theorem 3.7.
With α = ∞ (α = 0), we can see that Theorem 3.7 is con-
sistent with the known fact that LAS (FCFS) is the optimal
blind policy for DHR (IHR) task-size distributions in terms
of mean response time [22].

According to Theorem 3.7, we should increase the α value
in order to reduce the mean response time with a heavy-
tailed task-size distribution, and the best choice is α = ∞
(LAS). However, as discussed earlier, the LAS policy has
starvation problem, so it might be desirable to have a finite
upper bound for α. Furthermore, the mean response time
is not the only criteria that we need to consider; using a α
that is too large may result in unacceptably bad seniority
and slowdown fairness.

3.4 Comparison to MLFS/MLPS
The multi-level processor sharing (MLPS) [15] (or multi-

level feedback-queue scheduling, MLFS, as referred to in op-
erating system implementations [27]) is a blind policy that
divides the attained service time into multiple levels. Each
level contains an interval of attained service time, and tasks
in the level of the shorter attained service time has absolute
priority over those in the level of longer attained service
time. For tasks in the same level, any blind scheduling pol-
icy can be used, e.g., LAS, FCFS, or PS.

With many levels, the MLPS policy is just an approxi-
mation of LAS policy and the scheduling policy within each
level becomes less important. Therefore, a MLPS policy
with two levels has received a lot of attention recently [1], in
which attained service time is divided by a single threshold,
with the first level using LAS and the second level using PS.
In fact, using a tunable threshold between two levels, we can
make this two-level MLPS policy configurable, representing
a series of mixed policies between LAS and PS.

Comparing with PBS, we can see a few downsides in the
tunable two-level MLPS. First, unlike PBS, using the thresh-
old as tunable parameter in MLPS, the behavior depends on
the unit of the attained service time. Second, between levels,
it still functions like an LAS policy, therefore the first-level
tasks can starve the second-level ones. Third, the sojourn
time information is never used, and thus there is no way to
consider the seniority fairness. It can neither emulate FCFS
nor be anywhere close, and the mean response time is not
good in case that the task sizes have small variability. Last,
but not the least, tasks experience a sudden slowdown after
it is demoted to the second level. The upside of the two-level
MLPS are that it may be more analytically tractable.

4. IMPLEMENTATION AND RESULTS
This section presents the implementation of the PBS pol-

icy into Linux kernel version 2.6.15.7, and results from ex-
periments using the implementation. We identify the value
of α for which PBS closely emulates the original Linux sched-
uler, and then demonstrate that for different workloads, the
value for α that minimizes expected waiting time is differ-
ent, justifying the practical benefits of having a scheduler
whose behavior is easily tuned.

Kernel version 2.6.15.7, within which we implemented PBS,
was the most recent stable version of the Linux kernel. Our
implementation was limited to single processor machines
and hence the kernel was configured to single processor (i.e.,
not SMP) mode. Dividing the current count of clock cy-
cles obtained through the Pentium instruction rdtsc by the
CPU frequency, we obtained accurate measurements of so-
journ time and attained service time of each process, exclud-
ing the time spent by the scheduler and the interrupt han-
dler. We implemented a 64-bit integer logarithm in order to
compute the log-priority value. Parameter α is stored in the
kernel as a variable, and a new system call lips ctrl(int

cmd, int pid, void∗ param) is added to the kernel. This
call is accessible from the user level and allows user-level
code to set or get the current value of α. This system call
is also used to get scheduler statistics, and to set and get
other per-cpu or per-process parameters. We shall discuss
some of these parameters in this section.

4.1 Practical Challenges
Transitioning from a continuous description of the sched-

uler to a discretized description that can be implemented
in practice required us to make several design decisions. In
this subsection, we explain the issues, our decision, and jus-
tification.

Discretized Timeslice. PBS is described previously in
the context of a system that can divide time into infinitesi-
mal timeslices. This is unrealistic in actual systems, as the
timeslice must be some positive, contiguous chunk of time.
We stick with the Linux default setting of 4 ms.

Handling of blocked tasks. Processes can remain alive
yet be blocked, meaning that it cannot utilize the processor
because some resource it needs (e.g., disk, I/O devices) is
unavailable. One way to handle such blocking would be to
simply ignore it, i.e., ti grows continually at all times, and
xi increases when a task is not blocked and receives the
processor. To see the problem with this approach, consider
two tasks, i and j where i arrives to the system long before j
(ti ≫ tj) and i is blocked for a long time such that xi ≪ xj .
When i is no longer blocked, its larger ti and smaller xi will
enable it to starve out task j, regardless of the value of α.
Some services, such as http requests in Apache servers can
block for hours, days, or months, and will starve the rest of
the system from a long time upon its activation.

To avoid this type of task starvation, we can freeze ti for
a task that is blocked. This effectively freezes the task’s
priority level, which can be viewed as unfair to the blocked
task since the priority of unblocked tasks that are not being
processed continue to grow. Instead, our approach to avoid
for this unfairness is to reset both ti and xi to 0 for a task
whose blocked period is an excessive amount of time. We
measure this time with a parameter β indicating the multiple
of the average blocking time over which we reset xi and ti.
In our experiments, we set β = 3, which means once a task



0 1 2 3 4 5 6 7 8 9 10 11 12

(Time: seconds)
1 2 3 4

1 2 3 4

1 2 3 4

α = 1

α = 0.5

α = 2

Figure 4: Processor share on the modified Linux.

is blocked for more than three times the average blocking
period, its priority is set to that of a newly arriving task.

4.2 Sanity Check of Linux PBS
In our first set of experiments, we utilized the same sce-

nario considered in Section 2, with four independent pro-
cesses starting at 0 s, 1 s, 3 s, and 5 s, and running for
roughly 4.5 s, 2.5 s, 3 s, and 2 s. However, in this section,
the processes are run within an actual Linux implementation
as opposed to on a simulator that runs an idealized (con-
tinuous) implementation of PBS. During its running time,
each process repeatedly invokes a subroutine that takes a
constant running time, and records the time between in-
vocations by checking the system time. Figure 4 displays
the dynamics of the processor share obtained by each pro-
cess over time, averaged over a 50 ms window. Comparing
Figure 4 with Figure 2, we can see that, for each value of α
considered, the modified scheduler in the Linux kernel imple-
mentation’s partitioning of processor among tasks has some
additional variance due to the unavoidable discretization of
the timeslices, but whose basic partitioning is identical.

4.3 Finding the best α

We now turn our attention to identifying good values of α.
We demonstrate that, even when the only objective of inter-
est is the mean response time, the best value of α depends
on the distribution of task sizes.

To reduce the interference from other running services and
to ensure a fair comparison, we use a self-compiled Linux
From Scratch version 5.1.1 Linux distribution [6] with our
modified kernel in all experiments.

4.3.1 Scenario 1: Small α best
We consider a setting in which eight users perform com-

putations simultaneously. Each computation consists of a
sequence of simple mathematical operations, lasting approx-
imately three seconds, and is divided into six segments. Be-
tween segments, each user experiences a short blocked pe-
riod (e.g., in order to wait for the data from the disk), which
lasts about 10 ms. Between computational tasks, each user
has a random think time, exponentially distributed with
mean 25 s.

In each experiment, we measured the mean response time
of all tasks for 7200 s, with 800 s ramp-up time and 200 s
ramp-down time. For each α, we repeated experiments for
20 times on a Pentium III 550 MHz desktop computer. Fig-
ure 5 plots the mean response time under the PBS policy as
a function of α. For each α, we show in Figure 5 the aver-
age and 99% confidence interval according to the 20 samples

 3

 4

 5

 6

 7

 8

 10 5 4 3 2 1 0.7 0.5 0.3 0.2 0.1RRLnx

M
ea

n 
re

sp
on

se
 ti

m
e 

(S
ec

on
ds

)

Policy Parameter α

PBS
Linux 2.6.15

Round-Robin

Figure 5: The mean response time for the compu-
tational model (Scenario 1).

of mean response time. For comparison, the bars in Figure
5 shows the results from similar experiments using either
the Linux 2.6.15 native scheduler or a standard RR (round-
robin) one.

The results show that the mean response time under the
RR scheduler is slightly lower than that under the native
scheduler of Linux 2.6.15. On the other hand, compared to
the native scheduler, the excess of mean response time (the
amount beyond the required running time of 3 seconds) is
reduced by 20-30% under the PBS policy with small values
of α (0.1–0.4). We see that, in such a system with tasks of
similar sizes, smaller values of α are better.

4.3.2 Scenario 2: Large α best
Our other scenario utilizes an Apache httpd server [3]

(2.0.55) on the same hardware as above. A total number of
30 clients generate HTTP requests with random think time
exponentially distributed with 10 s mean. The requested
file sizes are described by the Pareto distribution with a
shape index of 1.2 [12]. Dynamic web pages are generated
by a CGI program. This program reads random file contents
from disk with additional processing to consume CPU time,
and returns a short summary page to the client in order to
save network bandwidth. In general, our experiments run
with a CPU-bound system instead of a network-bound one.
The processing time is proportional to the file size requested
by the clients.

Figure 6 shows the mean response time for different α’s,
compared with Linux and RR schedulers. The figure uses
the same format as Figure 5. However, for each type of
scheduler, we include an additional plot whose values lie
beneath the original to identify the mean response time of
“small” tasks, where we define a task as “small” if its size
lies below the mean size taken over all tasks in the experi-
ment. Roughly 78% of the requests are “small.” The results
show that, for web-like workload, the native Linux scheduler
yields a smaller mean response time in comparison to the
RR scheduler; for small tasks the gain is more significant.
Again, we see that PBS can achieve an even lower mean re-
sponse time than both the both Linux and RR schedulers,
but in this scenario, α must be large. The benefit of using
PBS with a large α is considerably more dramatic when we
consider the mean response time of small tasks.

4.4 Parameter Extensions



i

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 5 4 3 2 1 0.7 0.5 0.3 0.2 0.1RRLinux

M
ea

n 
re

sp
on

se
 ti

m
e 

(S
ec

on
ds

)

Policy Parameter α

PBS
Linux 2.6.15

Round-Robin

Figure 6: The mean response time for the web server
model (Scenario 2).

During the development and testing of our implemen-
tation, we discovered some minor limitations of the sim-
ple, single-parameter priority mechanism described thus far.
We conclude this section by exploring these limitations and
showing how, by adding additional parameters, PBS can
address these limitations.

4.4.1 Context switch cost
In real systems, when the processor context switches (sus-

pends processing a task i and resumes or starts processing
another task j), there is a brief period of time during which
no task is processed, representing a cost imposed by context
switches. For interactive tasks that require a high level of
responsiveness, frequent switching is necessary, and the ex-
pected time between context switches should be kept short.
In contrast, long-running tasks that do not require a high
level of responsiveness are better served with longer times
between context switches.

Regardless of the value of α, there are occasions where
PBS will context switch after every time slice (i.e., every
4 ms using the default Linux setting). For example, when
two tasks arrive at approximately the same time, their pri-
ority values vary similarly. In each time slice, the task with
slightly higher priority will be processed, and the processing
in this interval will lower its priority against the other task,
inducing a context switch afterwards.

The PBS policy can be easily and elegantly extended to in-
crease expected times between context switches by including
an additional parameter, γ. In an actual implementation, in
any given time interval, only a single task i is processed at a
time. When comparing priority values of tasks to determine
the task for processing in the next time-slice, we can prior-
itize the current processed task i by requiring other tasks’
priorities to exceed task i’s priority by at least γ, i.e., task
j is not swapped in for task i unless pj(t) > pi(t) + γ.

We emphasize two points about including this additional
parameter:

• The value of γ does not affect a task’s share of processor
over long periods of time, but simply reorders on shorter
timescales the slices during which it receives the service.

• As tasks age, the expected time between context switches
increases.

0 1 2 3 4 5 6 7 8 9 10 11 12

(Time: seconds)
1 2 3 4

1 2 3 4

α = 2

Linux

γ = 0.07

2.6.15

Figure 7: Comparison of the native Linux scheduler
and the PBS scheduler. The processor share of each
process is the average over a 50 ms window.

To see a rough sketch of the second claim above, consider
that n persistent tasks have been running for a fairly long
period of ti(t) ≈ t̃ seconds, and the scheduler grants each
task i a share that is roughly equal, i.e.,. xi(t) ≈ x̃ = t̃/n.
Suppose the scheduler switches to a task at time t̃. We add
a bonus γ to the log-priority value pi(t) (as shown in (2) )
of this task. After ∆t seconds, the log-priority value of the
current task is approximately

log(t̃ + ∆t) − α log(x̃ + ∆t)) + γ (5)

and that of a non-scheduled other task is

log(t̃ + ∆t) − α log x̃ (6)

When (6) exceeds (5), there is a context switch. The elapsed
time between two consecutive context switches is then

∆t ≈ x̃
“

2γ/α − 1
”

=
t̃

n

“

2γ/α − 1
”

.

We can see that the time between the context switch is in-
deed increasing and approximately linear to the attained
service time in a long run.

We can also use this intuitive derivation above to esti-
mate a good value for γ, assuming that the desired expected
switching time, ∆t, is known and is a function that is in-
versely proportional to the attained service time, xi(t):

γ ≈ α log

„

1 +
n∆t

t̃

«

≈ α log

„

1 +
∆t

x̃

«

. (7)

For example, suppose we wish to configure PBS with a
value of α = 2.0 such that ∆t/xi(t) = 1/40, meaning that
tasks are expected to run continuously for periods roughly
equal to 1/40 of their attained service time (e.g., the time
between context switches is 100 ms when the task has been
running for 4 seconds). In this case, we choose γ to be

γ ≈ α log(1 + 0.025) ≈ 0.07.

Note that this value is very small. An experimental compar-
ison of the scheduler with and without this bonus is given in
Figure 7. The figure shows that, with α = 2 and γ = 0.07,
the behavior of the PBS policy is very similar to that of the
Linux 2.6.15 native scheduler for the first few seconds, ex-
cept that with PBS the context switch frequency decreases
over time. 2

4.4.2 Weighted priorities (nice)

2We found that the behavior of a different Linux 2.6 version
is in fact different; for example, the scheduler in later Linux
versions (e.g. 2.6.20) is more close to the RR policy.



Many operating systems provide applications a chance to
change their priority within the system. In Unix-like sys-
tems, the priority shift is implemented by the system call
nice. However, a poorly implemented nice will starve lower
priority tasks. We can extend PBS with an offset param-
eter, δi, per task (δi can be either positive or negative) to
the calculated log-priority value for task i. No permanent
starvation will be introduced (as shown in Section 3.1), but
one should be careful not to make δi values too large. To
make task i’s long-term share of processor a multiple κi

of the share of a regular task k (where δk = 0), we set
xi(t) ≈ κixk(t) and ti(t) ≈ tk(t) in

δi + log ti(t) − α log xi(t) = log tk(t) − α log xk(t)

yielding

δi ≈ α log κi, (8)

or equivalently κi = exp(δi/α). With δi given to each task,
the PBS policy converges to to a DPS policy [9].

5. CONCLUSION
We have designed, analyzed, implemented, and evaluated

a generalized priority-based blind scheduling policy, called
PBS. By appropriately setting the scheduler’s tunable pa-
rameter, the scheduler is able to approximate well-known
blind policies like FCFS, PS, and LAS policies, as well as
implement policies that trade off the various desirable fair-
ness properties of the well-known policies. We also demon-
strated analytically and empirically that for different work-
loads, system performance is optimized under different set-
tings of the parameter. Hence, systems that must utilize
blind policies to schedule their tasks can easily handle a
wider variety of workloads with such a tunable scheduler.
While we have guidelines at this time to give insight how to
tune the parameter, we don’t have closed form results on op-
timality. One direction for future work is to provide better
mechanisms for tuning this parameter, one possibility being
a closed-loop controller that utilizes feedback from the sys-
tem on its current performance to make on-line adjustments
to the parameter.

6. REFERENCES
[1] S. Aalto, U. Ayesta, and E. Nyberg-Oksanen. Two-level

processor-sharing scheduling disciplines: Mean delay
analysis. InProc. ACM SIGMETRICS ’04, pages 97–105,
2004.

[2] J. Abate and W. Whitt. Limits and approximations for the
M/G/1 LIFO waiting-time distribution.Operations
Research Letters, 20:199–206, 1997.

[3] Apache Software Foundation. Apache Httpd.
http://httpd.apache.org/.

[4] N. Bansal. Achievable sojourn times by non-size based
policies in a GI/GI/1 queue. Technical report, IBM Watson
Research Center, 2004.
http://www.research.ibm.com/people/n/nikhil/papers/blindnew.pdf.

[5] P. Barford and M. Crovella. Generating representative web
workloads for network and server performance evaluation. In
Proc. SIGMETRICS/PERFORMANCE ’98, pages 151–160,
November 1998.

[6] G. Beekmans. Linux from scratch.
http://www.linuxfromscratch.org/lfs/.

[7] B. Caprita, W. C. Chan, J. Nieh, C. Stein, and H. Zheng.
Group ratio round-robin:O(1) proportional share scheduling

for uniprocessor and multiprocessor systems. InProc.
USENIX ’05, 2005.

[8] E. Coffman, R. Muntz, and H. Trotter. Waiting time
distribution for processor-sharing systems.Journal of the
ACM, 17(1):123–130, 1970.

[9] G. Fayolle, I. Mitrani, and R. Iasnogorodski. Sharing a
processor among many job classes.Journal of the ACM,
27(3):519–532, 1980.

[10] H. Feng, V. Misra, and D. Rubenstein. The PBS policy:
Some properties and their proofs. Technical Report
CUCS-015-07, Dept. of Computer Science, Columbia
University, 2007.

[11] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M.
Levy, and J. Zahorjan. Measurement, modeling, and analysis
of a peer-to-peer file-sharing workload. InProc. SOSP, 2003.

[12] M. Harchol-Balter, B. Schroeder, N. Bansal, and
M. Agrawal. Size-based scheduling to improve web
performance.ACM Trans. Comput. Syst., 21(2), 2003.

[13] A. Kherani. Sojourn times in (discrete) time shared systems
and their continuous time limits. InProc. Valuetools ’06,
2006.

[14] A. Kherani and R. Ǹuñez-Queija. TCP as an implementation
of age-based scheduling: Fairness and performance. InProc.
IEEE Infocom ’06, 2006.

[15] L. Kleinrock. Queueing Systems Volume I: Theory, Volume
II: Computer Applications. John Wiley&Sons, 1975,1976.

[16] C. L. Liu and J. W. Layland. Scheduling algorithms for
multiprogramming in a hard-real-time environment.Journal
of the ACM, 20(1):46–61, 1973.

[17] I. Mitrani and J. H. Hine. Complete parameterized families of
job scheduling strategies.Acta Informatica, 8:61–73, 1977.

[18] S. Padhy and A. A. Kherani. Tail equivalence for some
time-shared systems. InProc. Valuetools ’06, 2006.

[19] A. K. Parekh and R. G. Gallager. A generalized processor
sharing approach to flow control in integrated services
networks: The single-node case.IEEE/ACM Transactions on
Networking, 1(3):344–357, 1993.

[20] I. A. Rai, G. Urvoy-Keller, M. K. Vernon, and E. W.
Biersack. Performance analysis of LAS-based scheduling
disciplines in a packet switched network. InProc. ACM
SIGMETRICS ’04, pages 106–117, 2004.

[21] D. Raz, H. Levy, and B. Avi-Itzhak. A resource-allocation
queueing fairness measure. InProc. ACM SIGMETRICS ’04,
pages 130–141, 2004.

[22] R. Righter, J. G. Shanthikumar, and G. Yamazaki. On
extremal service disciplines in single-stage queueing
systems.Journal of Applied Probability, (2):409–416, 1990.

[23] M. Ruschitzka and R. Fabry. A unified approach to
scheduling.Commun. of the ACM, 20(7):469–477, 1977.

[24] L. Schrage. The queueM/G/1 with feedback to lower
priority queues.Management Science, 13(7):466–474, 1967.

[25] L. Schrage. A proof of the optimality of the shortest
remaining processing time discipline.Operations Research,
16(3):687–690, 1968.

[26] L. E. Schrage and L. W. Miller. The queueM/G/1 with the
shortest remaining processing time discipline.Operations
Research, 14(4):670–684, 1966.

[27] A. Silberschatz, P. B. Galvin, and G. Gagne.Applied
Operating Systems Concepts. John Wiley&Sons, 2000.

[28] A. Wierman and M. Harchol-Balter. Classifying scheduling
policies with respect to unfairness in anM/GI/1. In Proc.
ACM SIGMETRICS ’03, pages 238–249, 2003.

[29] A. Wierman, M. Harchol-Balter, and T. Osogami. Nearly
insensitive bounds on smart scheduling. InProc. ACM
SIGMETRICS ’05, pages 205–216, 2005.


