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Interlacing Bypass Rings to Torus Networks 
for More Efficient Networks 

Peng Zhang, Reid Powell, and Yuefan Deng, Member, IEEE 

Abstract — We introduce a new technique for generating more efficient networks by systematically interlacing bypass rings to 
torus networks (iBT networks). The resulting network can improve the original torus network by reducing the network diameter, 
node-to-node distances, and by increasing the bisection width without increasing wiring and other engineering complexity. We 
present and analyze the statement that a 3D iBT network proposed by our technique outperforms 4D torus networks of the 
same node degree. We found that interlacing rings of sizes 6 and 12 to all three dimensions of a torus network with meshes 
30×30×36 generates the best network of all possible networks, including 4D torus and hypercube of approximately 32,000 
nodes. This demonstrates that strategically interlacing bypass rings into a 3D torus network enhances the torus network more 
effectively than adding a fourth dimension, although we may generalize the claim. We also present a node-to-node distance 
formula for the iBT networks. 

Index Terms— Network topology, torus networks, bypass ring, network diameter, node-to-node distance, routing  

——————————      —————————— 

1 INTRODUCTION

DVANCED networking architectures [1-5] have 
helped enable supercomputers such as RoadRunner 
[6] to break the petaflop barrier and such progress 

has stimulated the parallel computing community’s ambi-
tions to invent more scalable interconnection networks to  
accommodate the ever-increasing demands of perfor-
mance and functionalities by incorporating millions of 
powerful processor cores. A scalable interconnection 
network, of a fixed node degree, must satisfy most of the 
performance requirements including small diameter, 
large bisection width, topological simplicity, high-degree 
symmetry, design modularity, and engineering feasibili-
ty, as well as expandability. For example, a 3D torus net-
work such as those in the IBM’s Blue Gene and Cray’s 
T3E [1-4] with up to 20 thousand nodes and several small-
scale hypercube network supercomputers [5, 7-9] satisfy 
several of the requirements. However, the network di-
ameters grow as Θ�√𝑛𝑛� for a torus and as Θ(log𝑛𝑛) for a 
hypercube and at a similarly rapid rate for many of their 
derivatives [7-12], where 𝑛𝑛 is the network size. This defect 
of rapidly growing diameters greatly limits the expanda-
bility of these networks. Mesh networks of fixed dimen-
sion provide an alternative with relatively low node-
degree and low engineering complexity but with large 
network diameter and small overall bandwidth. Other 
efforts to increase bandwidth without increasing network 
diameters include that of the hybrid fat-tree [13], a low-
cost, low-degree network with irregular node degree; 
however, it is suceptible to faulty links and to message 

contension towards roots. Other proposals have also been 
introduced, such as the incomplete torus and its deriva-
tives [14] that reduce node degree at the expense of losing 
symmetry and topological simplicity. Honeycomb mesh 
and torus networks [15] received considerable early atten-
tion that faded quickly due to implementation obstacles, 
among other difficulties. Hexagonal networks introduced 
in [16] also boast a small diameter but carry a burden of a 
high node degree. Modifications of the traditional torus 
including the PEC [17], SRT [18], TESH [19], and RDT [20] 
networks all build upon the simplicity of mesh and torus 
networks, achieving improved network properties with 
unfavorable expandability and network cost. However, 
these variants demonstrated that interlacing rings of vari-
ous lengths to a torus network is a profitable practice for 
improving network performance without adding signifi-
cant engineering complexity. 

Motivated by this, we propose the iBT network. The 
iBT network is constructed by interlacing bypass rings 
evenly into a torus network. We preserve the simplicity of 
grid-like layout and improve the performance of the net-
work with minimal number of bypass links. Our model 
allows generalization of the bypass construction of the 
base torus to arbitrary dimensions for much larger and 
scalable networks, rather than in 2D as in [17, 18, 20]. This 
new network achieves a low network diameter, high bi-
section width, short node-to-node distances, and low en-
gineering complexity in terms of network cost. Further-
more, the iBT network has much lower node degree and 
lower network cost than a hypercube of the similar net-
work size does. To ensure network symmetry and mod-
ularity, we interlace rings into the torus network consis-
tently. To analyze the topological properties for achieving 
an optimal network, we present the node-to-node hop 
distance distributions. 

The paper is organized as follows: We first define the 
iBT interconnection model and its generation scheme in 
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Section 2.1. In Sections 2.2 and 2.3, we describe the evalua-
tion criteria for networks and the performance compari-
sons with torus and hypercube networks. A formula for a 
node-to-node shortest distance is discussed in Section 3. A 
conclusion is drawn in the last section. 

2 IBT INTERCONNECTION MODEL 
The iBT network, generated by interlacing bypass rings 
into a torus network, is an 𝑛𝑛-dimensional composite net-
work that contains the original 𝑛𝑛-dimensional torus net-
work and the added bypass rings. In this section, we for-
mally define the iBT network and discuss its topological 
properties. We also demonstrate the procedure to gener-
ate an optimal 3D iBT network from a 3D torus network. 
For a concrete example, we show the detailed procedure 
to generate an optimal iBT network with approximately 
32,400 nodes and to compare it to a 4D torus network of 
32,768 nodes with identical node degree of eight and to a 
hypercube with 215 = 32,768 nodes. 

2.1 Definition of iBT Networks 
An iBT(𝑁𝑁1 × ⋯× 𝑁𝑁𝑛𝑛 ; 𝐿𝐿 = 𝑚𝑚; 𝑙𝑙 = 〈𝑙𝑙1,⋯ , 𝑙𝑙𝑘𝑘〉) network out-
grows from an 𝑛𝑛-dimensional torus network 𝑇𝑇(𝑁𝑁1 × ⋯×
𝑁𝑁𝑛𝑛) by interlacing 𝑙𝑙𝑖𝑖-hop bypass rings (𝑖𝑖 = 1 … , 𝑘𝑘) recur-
sively into any 𝑚𝑚 of the 𝑛𝑛 dimensions (𝑚𝑚 ≤ 𝑛𝑛). The 𝑚𝑚 di-
mensions with bypass rings are referred to as the bypass 
dimensions and the remaining 𝑛𝑛 − 𝑚𝑚 dimensions without 
bypass rings are referred to as plain dimensions. The 
terms 𝐿𝐿 = 𝑚𝑚; 𝑙𝑙 = 〈𝑙𝑙1,⋯ , 𝑙𝑙𝑘𝑘〉 are referred to as a bypass 
scheme for generating the iBT network. This interconnec-
tion model results in a node degree of 2𝑛𝑛 + 2 where 2𝑛𝑛 is 
from the original torus connections and the additional 2 
from the bypass connections. To determine the two by-
pass connections for a node 𝑝𝑝 = (𝑥𝑥1, 𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛), where 𝑥𝑥𝑖𝑖 ∈
[0,𝑁𝑁𝑖𝑖 − 1], 𝑖𝑖 = 1 … , 𝑘𝑘, we introduce three terms: a node 
bypass dimension 𝑑𝑑(𝑝𝑝) ∈ {1,2,⋯𝑚𝑚} and a node bypass 
length 𝑙𝑙(𝑝𝑝) ∈ {𝑙𝑙1,⋯ , 𝑙𝑙𝑘𝑘} which can be expressed as: 

𝑑𝑑(𝑝𝑝) = ���𝑥𝑥𝑖𝑖

𝑚𝑚

𝑖𝑖=1

�  (mod 𝑚𝑚)� +  1   and   𝑙𝑙(𝑝𝑝) = 𝑙𝑙ℎ , 

where 

ℎ = �
(∑ 𝑥𝑥𝑖𝑖𝑚𝑚

𝑖𝑖=1 )(mod 𝑚𝑚𝑚𝑚)
𝑚𝑚

� + 1 ∈ {1, … , 𝑘𝑘} . 

Thus, a node bypass species 𝑠𝑠(𝑝𝑝) = 〈𝑑𝑑(𝑝𝑝), 𝑙𝑙(𝑝𝑝)〉, indi-
cating that two 𝑙𝑙(𝑝𝑝)-hop bypass links have been added to 
the given node 𝑝𝑝 in each direction along the dimension 
𝑑𝑑(𝑝𝑝). For example, iBT(32 × 32 × 16; 𝐿𝐿 = 2; 𝑙𝑙 = 〈4,16〉) 
indicates the interlacing of 4-hop and 16-hop bypass rings 
in the first two dimensions, i.e., 𝑥𝑥𝑥𝑥-plane, of the 3D torus 
𝑇𝑇(32 × 32 × 16). A node 𝑝𝑝 = (1,1,4) has a bypass dimen-
sion 𝑑𝑑(𝑝𝑝) = 1, a bypass length 𝑙𝑙(𝑝𝑝) = 𝑙𝑙2 = 16, and thus its 
bypass species is 〈1,16〉, implying that 𝑝𝑝 has two 16-hop 
bypass links in each direction along dimension 𝑥𝑥, i.e., the 
first dimension. In order for the node sets of any two by-
pass rings to be disjoint, both 𝑙𝑙1,⋯ , 𝑙𝑙𝑘𝑘   and 𝑁𝑁1,⋯ ,𝑁𝑁𝑚𝑚  must 
be divisible by 𝑚𝑚𝑚𝑚. 

In Fig. 1, we show the hop distance distribution and 
bypass configurations for a family of 1-dimensional iBT 
networks written as iBT(32; 𝐿𝐿 = 1; 𝑙𝑙 = 〈𝑙𝑙1, 𝑙𝑙2〉) generated 

from a 1-dimension torus network with 32 nodes. A 1-
dimesional torus network 𝑇𝑇(32) is itself a ring. This 1D 
scheme is easy to follow and to generalize for illustration 
at higher dimensions. The node-to-node distance within a 
32-node 2D torus network 𝑇𝑇(4 × 8) is  𝐷𝐷𝑇𝑇(4×8) =
(𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑐𝑐𝑐𝑐) ± (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) = 3.00 ±
1.41. As shown by Fig. 1, the node-to-node distances of 
the resulting iBT networks are statistically smaller than 
𝐷𝐷𝑇𝑇(4×8), for example, 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖(32,;𝐿𝐿=1; 𝑙𝑙=〈4,8〉) = 2.41 ± 0.95 
and 𝐷𝐷𝑖𝑖𝑖𝑖𝑖𝑖(32;𝐿𝐿=1;𝑙𝑙=〈8〉) = 2.94 ± 1.32. In Fig. 2, we draw all of 
the links for the 2D iBT network iBT(8 × 8; 𝐿𝐿 = 2; 𝑙𝑙 = 〈4〉). 
In Fig. 3, we illustrate the bypass arrangement for the 3D 
iBT network iBT(30 × 30 × 36; 𝐿𝐿 = 3; 𝑙𝑙 = 〈6,12〉). In this 
figure, we only draw the bypass links along the three eas-
ily visible edges to identify the nodes that are connected 
by the appropriate bypass links. Other links are omitted 
for the purpose of clarity. 

2.2 Evaluation Criteria for Networks 
To evaluate a network model, we consider its diameter, 
average node-to-node hop distance, bisection width, and 
more importantly, the node-to-node hop distance distri-
bution [21-23]. The network diameter, defined as the 
longest node-to-node hop distance, indicates the worst-
case communication latency, while the average distance, 
defined as the average of the node-to-node hop distances, 
represents the expected communication latencies over the 
network. These two measures provide some information 
about the network while the hop distance distribution 
provides a richer representation of the network properties 
including maximum, average, and standard deviation of 
node-to-node distances. Additionally, we consider the 
bisection width to measure the aggregate network capaci-
ty and the network cost, defined as a product of diameter 
and node degree, for network comparison [24]. 

2.3 Topological Optimization 
In this section, we compare the topological properties of 
3D iBT networks with a number of nodes closest to that of 
a 4D torus network with exactly 32,768 nodes [5]. We will 
analyze three iBT networks: (1) the 3D iBT network with 
bypass rings in two dimensions iBT(32 × 32 × 32; 𝐿𝐿 = 2); 
(2) iBT(64 × 64 × 8; 𝐿𝐿 = 2); and (3) iBT(30 × 30 × 36; 𝐿𝐿 =
3), a 3D iBT network with bypass rings in all three di-
mensions. For each iBT network, we evaluate them with 
bypass rings of the same length or a mix of two different 
lengths.  For comparison, we also analyze two other net-
works with a similar number of nodes: a 4D torus net-
work 𝑇𝑇(16 × 16 × 16 × 8) and a 15D hypercube 𝐻𝐻(215). 
Due to the fact that the node numbers of various network 
configurations are usually non-contiguous integers, it is 
unlikely one can find two configurations with exactly the 
same number of nodes. We compare two closest: a 32,768-
node 𝑇𝑇(16 × 16 × 16 × 8) and 𝐻𝐻(215) with a 32,400-node 
iBT(30 × 30 × 36; 𝐿𝐿 = 3). 

Our analysis starts from numerical experiments. Fig-
ures 4 to 8 illustrate the numerical results for the 3D 
iBT(𝐿𝐿 = 2) and iBT(𝐿𝐿 = 3) networks, compared with 4D 
torus and hypercube. Table 1 presents such network topo-
logical properties as node-to-node hop distance distribu-
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tion, network diameter, and bisection width. These expe-
riments show, as expected, the dependence of the net-
work properties on the bypass scheme; network proper-
ties behave relatively poorly at bypass extremes: too short 
or too long. Starting from a torus network 𝑇𝑇�𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 ×
𝑁𝑁𝑧𝑧�, we study the following cases: 

1. For 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 × 𝑁𝑁𝑧𝑧 = 32 × 32 × 32 = 32,768, we by-
pass in two dimensions with uniform bypass 
length to generate a new network, iBT(32 × 32 ×
32; 𝐿𝐿 = 2; 𝑙𝑙 = 〈𝑙𝑙1〉) with 𝑙𝑙1 ∈ {2, 4, 6, 8, 16}. We 
found the resulting networks have relatively poor 
network properties for extreme bypassing lengths 
such as 𝑙𝑙1 ∈ {2, 16}, but have better properties with 
middle-sized bypass lengths such as 𝑙𝑙1 = 6, result-
ing in that iBT(32 × 32 × 32; 𝐿𝐿 = 2; 𝑙𝑙 = 〈6〉) is the 
optimal iBT network with uniform bypass length 
in Fig. 5. 

2. For 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 × 𝑁𝑁𝑧𝑧 = 32 × 32 × 32 (same as above), 
we bypass in two dimensions with a mixture of 
two bypass lengths to generate a network, 
iBT(32 × 32 × 32; 𝐿𝐿 = 2; 𝑙𝑙 = 〈𝑙𝑙1, 𝑙𝑙2〉), with 𝑙𝑙1, 𝑙𝑙2 ∈
{4, 8, 16, 32}. With all possible combinations, the 
bypassing parameter 𝑙𝑙 = 〈4,16〉 generates the op-
timal iBT network with two bypass lengths in Fig. 
6. We also found that  
iBT(32 × 32 × 32; 𝐿𝐿 = 2; 𝑙𝑙 = 〈4,16〉) excels over 
iBT(32 × 32 × 32; 𝐿𝐿 = 2; 𝑙𝑙 = 〈6〉) in Table 1. 

3. For 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 × 𝑁𝑁𝑧𝑧 = 64 × 64 × 8 = 32,768, we by-
pass in two of the longest dimensions to generate a 
new network, iBT(64 × 64 × 8; 𝐿𝐿 = 2; 𝑙𝑙 = 〈𝑙𝑙1, 𝑙𝑙2〉). 
Under the same bypass scheme 𝐿𝐿 = 2; 𝑙𝑙 = 〈𝑙𝑙1, 𝑙𝑙2〉, 
we found iBT(64 × 64 × 8; 𝐿𝐿 = 2) always outper-
forms iBT(32 × 32 × 32; 𝐿𝐿 = 2) in Fig. 4 and  
iBT(64 × 64 × 8; 𝐿𝐿 = 2; 𝑙𝑙 = 〈4,16〉) is the best of all 
possibilities where 𝐿𝐿 = 2 in Table 1. 

4. For 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 × 𝑁𝑁𝑧𝑧 = 30 × 30 × 36 = 32,400 ≈
32,768, we consider bypassing in all three dimen-
sions to generate a network iBT(30 × 30 × 36; 𝐿𝐿 =
3). As shown by Fig. 7 and Fig. 8, iBT(30 × 30 ×
36; 𝐿𝐿 = 3; 𝑙𝑙 = 〈𝑙𝑙1〉)  with 𝑙𝑙1 ∈ {6, 9, 12} demonstrat-
ed the same behavior as those for iBT(64 × 64 ×
8; 𝐿𝐿 = 2; 𝑙𝑙 = 〈𝑙𝑙1, 𝑙𝑙2〉). We also found iBT(30 × 30 ×
36; 𝐿𝐿 = 3; 𝑙𝑙 = 〈6,12〉) is the best among all of the 
iBT networks, better than 4D torus and similar to 
15D hypercube in Fig. 8 and Table 1. 

5. In Table 1, we found most networks have the same 
network diameter but different average distances 
and various standard deviations and a network 
with a larger network diameter may have a small-
er average distance such as  
iBT(30 × 30 × 36; 𝐿𝐿 = 3; 𝑙𝑙 = 〈𝑙𝑙1〉) with 𝑙𝑙1 ∈ {9,12}. 

From these experiments, we make the following 
claims: 

1. For the iBT networks with uniform bypass length, 
extreme bypass length achieves poorer network 
properties than a middle-sized bypass lengths do; 

2. An appropriate mixture of bypass lengths is fa-
vored in the interlacing arrangement for iBT net-
works over uniform bypass length; 

3. For iBT networks with plain dimensions, a plain 
dimension size should be shrunk to scale to bypass 
dimensions for optimized performance; 

4. The most efficient bypass scheme for a 3D iBT 
network is without plain dimensions. It is shown 
that, among all the possibilities of a system with 
approximately 32,000 nodes, iBT(30 × 30 × 36; 𝐿𝐿 =
3; 𝑙𝑙 = 〈6,12〉) is the best network. It performs much 
better than the simple 4D torus 𝑇𝑇(16 × 16 × 16 ×
8) with 32,768 nodes and it performs similarly to 
the 15D hypercube 𝐻𝐻(215) with 32,768 nodes with 
degree 15. Its network cost of value 96 is much 
smaller than the 4D torus’s 224 and the hyper-
cube’s 225; 

5. The node-to-node hop distance distribution is effi-
cient and precise in its depiction of topological de-
tails for the comparison of networks. 

2.4 Performance Comparisons 
Through exhausive numerical search, we found the op-
timal iBT network of approximately 32,000 nodes to be 
iBT(30 × 30 × 36; 𝐿𝐿 = 3; 𝑙𝑙 = 〈6,12〉). We further compare 
this with other networks and graphs in Table 1 and Fig. 9. 
All networks, in the table, except the 3D torus, hypercube, 
the CCC network [12] and the scalable Barrel Shifter [25] 
have a node degree of 8. As shown in Fig. 9, these net-
works are grouped into three categories by their sizes. Of 
all networks of size 32,000 nodes and of degree 8, the iBT 
network has the shortest average distance. 

3 DISTANCE FORMULAS 

For optimal routing, we always need to search for a path 
with the shortest node-to-node distance [1, 2, 16]. There 
are many possible paths for linking a pair of source and 
destination nodes for iBT networks. It is much less ob-
vious to recognize such paths for the iBT networks than 
for the torus network. This appears to be one of the few 
disadvantages of the iBT network. To overcome this, we 
have derived a closed form node-to-node distance formu-
la for the iBT networks with the bypass scheme  𝐿𝐿 ∈
{2,3}; 𝑙𝑙 = 〈𝑙𝑙1〉. Other more complex cases can also be de-
rived. 

3.1 Terminology 
In iBT(𝑁𝑁1 × ⋯× 𝑁𝑁𝑛𝑛 ; 𝐿𝐿 = 𝑚𝑚; 𝑙𝑙 = 〈𝑙𝑙1,⋯ , 𝑙𝑙𝑘𝑘〉) networks, the 
number of hops in a shortest path between a node-pair 
can be partitioned into two parts: one from the first 𝑚𝑚 
bypass dimensions and the other from the remaining 
𝑛𝑛 −𝑚𝑚 plain dimensions, which are defined as 𝐵𝐵(𝑝𝑝1, 𝑝𝑝2) 
and 𝑇𝑇(𝑝𝑝1, 𝑝𝑝2), respectively.  Since the plain dimensions 
have no bypass connections, the procedure for calculating  
𝑇𝑇(𝑝𝑝1,𝑝𝑝2) is identical to that of a traditional torus network.  
Thus, we concentrate on calculating 𝐵𝐵(𝑝𝑝1,𝑝𝑝2) by assum-
ing that 𝑚𝑚 = 𝑛𝑛.  Considering this, we abbreviate the iBT 
networks with a uniform-length bypass connection in the 
first two or three dimensions as iBT�𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 ; 𝐿𝐿 = 2; 𝑙𝑙 =
〈𝑙𝑙1〉) and iBT�𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 × 𝑁𝑁𝑧𝑧 ; 𝐿𝐿 = 3; 𝑙𝑙 = 〈𝑙𝑙1〉� respectively. 

In the iBT�𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 ; 𝐿𝐿 = 2; 𝑙𝑙 = 〈𝑙𝑙1〉� network, consider 
two points 𝑝𝑝1 = (𝑥𝑥1,𝑦𝑦1)𝑇𝑇 and 𝑝𝑝2 = (𝑥𝑥2,𝑦𝑦2)𝑇𝑇, where 
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𝑥𝑥𝑖𝑖 ∈ [0,𝑁𝑁𝑥𝑥 − 1] and 𝑦𝑦𝑖𝑖 ∈ �0,𝑁𝑁𝑦𝑦 − 1�.  The 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) function 
is a standard sign function, while 𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) is the signum 
function, defined as: 

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = �−1, 𝑥𝑥 < 0
1, 𝑥𝑥 ≥ 0

� 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) = �
−1, 𝑥𝑥 < 0

0, 𝑥𝑥 = 0
1, 𝑥𝑥 > 0

� 

If 𝑥𝑥 is a vector, the same operation applies to each of its 
components.  For example, suppose 𝑣𝑣 = (𝑥𝑥,𝑦𝑦)𝑇𝑇, then 

𝑠𝑠𝑠𝑠𝑠𝑠(𝑣𝑣) = �
𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥)
𝑠𝑠𝑠𝑠𝑠𝑠(𝑦𝑦)�      and      |𝑣𝑣| = �

|𝑥𝑥|
|𝑦𝑦|�. 

Let 𝛿𝛿(𝑥𝑥,𝛼𝛼) be a two-point function defined as 
𝛿𝛿(𝑥𝑥,𝛼𝛼) = �1, 𝑥𝑥 = 𝛼𝛼

0, otherwise.
� 

Let the vector 𝑡𝑡 = �𝑡𝑡𝑥𝑥 , 𝑡𝑡𝑦𝑦�
𝑇𝑇  be referred to as the funda-

mental torus distance.  The magnitude of each element 𝑡𝑡𝑖𝑖  
represents the number of hops along dimension 𝑖𝑖 in the 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡𝑖𝑖)𝑖𝑖 direction on a non-bypass shortest path from 𝑝𝑝1 
to 𝑝𝑝2. For example, 𝑡𝑡𝑥𝑥 ≷ 0 indicates that the message tra-
verses |𝑡𝑡𝑥𝑥 | basis torus links in the positive or negative 𝑥𝑥-
dimension, making the fundamental torus distance simi-
lar to the distance formula of a traditional torus.  The de-
finition of 𝑡𝑡𝑥𝑥  is written as 

𝑡𝑡𝑥𝑥 = 𝛥𝛥𝛥𝛥 +
𝑁𝑁𝑥𝑥
2
𝑠𝑠𝑠𝑠𝑠𝑠(𝛥𝛥𝛥𝛥){𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑁𝑁𝑥𝑥 − 2‖𝛥𝛥𝛥𝛥‖) − 1}, 

in which 𝛥𝛥𝛥𝛥 = 𝑥𝑥2 − 𝑥𝑥1.  We similarly define and ex-
press 𝑡𝑡𝑦𝑦 . 

In iBT networks, the set of links on a shortest path 
from 𝑝𝑝1 to 𝑝𝑝2 can be partitioned into two subsets: bypass 
rings and residual torus links.  The bypass ring subset is 
referred to as the bypass distance 𝑏𝑏 = �𝑏𝑏𝑥𝑥 , 𝑏𝑏𝑦𝑦�

𝑇𝑇 , a vector in 
which the magnitude of each component 𝑏𝑏𝑖𝑖  is the number 
of bypass hops in dimension 𝑖𝑖 in the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑏𝑏𝑖𝑖)𝑖𝑖 direction 
on a shortest path from 𝑝𝑝1 to 𝑝𝑝2.  For example, 𝑏𝑏𝑥𝑥 ≷ 0 in-
dicates that a message from 𝑝𝑝1 to 𝑝𝑝2 traverses |𝑏𝑏𝑥𝑥 | hops of 
bypass rings in the positive or negative 𝑥𝑥-dimension.  
Thus, 𝑏𝑏𝑥𝑥  is written as 

𝑏𝑏𝑥𝑥 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 �
𝑡𝑡𝑥𝑥
𝑙𝑙
� − 𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡𝑥𝑥) ∙ 𝛿𝛿 ��𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �

𝑡𝑡𝑥𝑥
𝑙𝑙
�� , 0.5�, 

in which 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥) rounds 𝑥𝑥 to the nearest integer and 
𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑥𝑥) returns the fractional part of 𝑥𝑥. 

As stated previously, in addition to the bypass dis-
tance, a shortest path from 𝑝𝑝1 to 𝑝𝑝2 also has a residual 
torus link component. The residual torus distance is re-
ferred to as a vector 𝑡̂𝑡 = �𝑡̂𝑡𝑥𝑥 , 𝑡̂𝑡𝑦𝑦 �

𝑇𝑇  in which the magnitude 
of each component 𝑡̂𝑡𝑖𝑖  is the number of torus hops in di-
mension 𝑖𝑖 in the 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑡̂𝑡𝑖𝑖)𝑖𝑖 direction on a shortest path 
from 𝑝𝑝1 to 𝑝𝑝2.  For example, 𝑡̂𝑡𝑥𝑥 ≷ 0 indicates that the mes-
sage routes |𝑡̂𝑡𝑥𝑥 | hops of torus links in the positive or nega-
tive dimension 𝑥𝑥. Thus, 

𝑡̂𝑡 = 𝑡𝑡 − 𝑙𝑙 ∙ 𝑏𝑏 ⟺ �
𝑡̂𝑡𝑥𝑥
𝑡̂𝑡𝑦𝑦
� = �

𝑡𝑡𝑥𝑥 − 𝑙𝑙 ∙ 𝑏𝑏𝑥𝑥
𝑡𝑡𝑦𝑦 − 𝑙𝑙 ∙ 𝑏𝑏𝑦𝑦

�. 

In addition to the distance vectors, we also consider 
the bypass species of a node 𝑝𝑝1 - 𝑠𝑠(𝑝𝑝1): a vector defined as 

𝑠𝑠(𝑝𝑝1) = 𝑒𝑒[𝑥𝑥1+𝑦𝑦1(𝑚𝑚𝑚𝑚𝑚𝑚  𝐿𝐿)]+ 1, 
where “1” in 𝑠𝑠(𝑝𝑝1) indicates the dimension in which the 
node adds bypass connections.  For example, 𝑠𝑠(𝑝𝑝1 =
(1,2)𝑇𝑇) = 𝑒𝑒2 means 𝑝𝑝1 adds bypass rings to the second 

dimension, i.e., dimension 𝑦𝑦. 
The relationship among coordinates of 𝑝𝑝1,𝑝𝑝2 and 𝑡̂𝑡 is: 

𝑥𝑥1 + 𝑦𝑦1 (𝑚𝑚𝑚𝑚𝑚𝑚 𝐿𝐿) = 𝑥𝑥2 + 𝑦𝑦2 + 𝑡̂𝑡𝑥𝑥 + 𝑡̂𝑡𝑦𝑦  (𝑚𝑚𝑚𝑚𝑚𝑚 𝐿𝐿) 
The stated definitions in iBT�𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 ; 𝐿𝐿 = 2; 𝑙𝑙 = 〈𝑙𝑙1〉� 

can all be extended to iBT�𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 × 𝑁𝑁𝑧𝑧 ; 𝐿𝐿 = 3; 𝑙𝑙 = 〈𝑙𝑙1〉�. 

3.2 iBT�𝑵𝑵𝒙𝒙 × 𝑵𝑵𝒚𝒚;𝑳𝑳 = 𝟐𝟐; 𝒍𝒍 = 〈𝒍𝒍𝟏𝟏〉� 
In iBT�𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 ; 𝐿𝐿 = 2; 𝑙𝑙 = 〈𝑙𝑙1〉� in which 𝑙𝑙1 = 2(𝑘𝑘 + 1), 𝑘𝑘 ∈
𝑍𝑍+, the distance between 𝑝𝑝1 and 𝑝𝑝2 is given by 

𝐷𝐷(𝑝𝑝1, 𝑝𝑝2) = ‖𝑏𝑏‖1 + ‖𝑡̂𝑡‖1 + 𝜑𝜑𝑥𝑥𝑥𝑥 (𝑝𝑝1, 𝑝𝑝2), 

where   𝜑𝜑𝑥𝑥𝑥𝑥 (𝑝𝑝1, 𝑝𝑝2) = �
2, 𝛼𝛼 = 0,𝛽𝛽 = 2;
2, 𝛼𝛼 = 0, 𝛾𝛾 ∈ {5,10};
0, otherwise,

� 

in which 𝛼𝛼 = ‖𝑡̂𝑡‖2
2, 𝛽𝛽 = ‖𝑠𝑠𝑠𝑠𝑠𝑠(𝑏𝑏)‖2

2 and 𝛾𝛾 = ‖|𝑠𝑠𝑠𝑠𝑠𝑠(𝑏𝑏)| +
𝑠𝑠1 + 𝑠𝑠2‖2

2. The notation 𝛼𝛼 = 0, 𝛾𝛾 ∈ {5,10} means that if 
𝛼𝛼 = 0, 𝛾𝛾 = 5 or if 𝛼𝛼 = 0, 𝛾𝛾 = 10, we have 𝜑𝜑𝑥𝑥𝑥𝑥 (𝑝𝑝1, 𝑝𝑝2) = 2. 

In this equation, the terms ‖𝑏𝑏‖1 and ‖𝑡̂𝑡‖1 represent the 
bypass and torus hops a message needs to traverse under 
the assumption that a single node is on bypass rings 
across each of the bypass dimensions. After this, the pe-
nalty term 𝜑𝜑𝑥𝑥𝑥𝑥 (𝑝𝑝1, 𝑝𝑝2)  accounts for the interlacing of by-
pass rings, where a given node has bypass rings in exactly 
one bypass dimension. For example, 𝛼𝛼 = 0 indicates no 
residual torus links are required, implying that 𝑠𝑠(𝑝𝑝1) =
𝑠𝑠(𝑝𝑝2); meanwhile, 𝛽𝛽 = 2 tells that a message has to tra-
verse bypass rings in two dimensions. In this case, whi-
chever bypass species a message eminates from, an addi-
tional torus hop is required to reach a node of a different 
species to traverse bypass hops in that bypass dimension.  
Then, a second torus hop is required to return to a node 
of the original bypass species. Thus, a valid shortest path 
always requires a positive number of torus hops, mean-
ning 𝜑𝜑𝑥𝑥𝑥𝑥 (𝑝𝑝1, 𝑝𝑝2) = 2. The term 𝛾𝛾 is more subtle, implying 
the relationship between the bypass dimensions a mes-
sage must traverse and its source/destination bypass spe-
cies. Here, 𝛼𝛼 = 0 holds the same meaning. For example, 
consider a case where 𝑠𝑠(𝑝𝑝1) = 𝑠𝑠(𝑝𝑝2) = 𝑒𝑒1. However, 
𝛾𝛾 ∈ {5,10} implies that the message has bypass hops in 
the second dimension, i.e., dimension 𝑦𝑦. Similarly, the 
message also needs a positive number of torus hops to 
complete a valid shortest path in the iBT network. 

3.3 iBT�𝑵𝑵𝒙𝒙 × 𝑵𝑵𝒚𝒚 × 𝑵𝑵𝒛𝒛;𝑳𝑳 = 𝟑𝟑; 𝒍𝒍 = 〈𝒍𝒍𝟏𝟏〉� 
In iBT�𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 × 𝑁𝑁𝑧𝑧 ; 𝐿𝐿 = 3; 𝑙𝑙 = 〈𝑙𝑙1〉� in which 𝑙𝑙1 =
3(𝑘𝑘 + 1), 𝑘𝑘 ∈ 𝑍𝑍+, the distance between 𝑝𝑝1 and 𝑝𝑝2 is given 
by 

𝐷𝐷(𝑝𝑝1, 𝑝𝑝2) = ‖𝑏𝑏‖1 + ‖𝑡̂𝑡‖1 + 𝜑𝜑𝑥𝑥𝑥𝑥𝑥𝑥 (𝑝𝑝1, 𝑝𝑝2) 

where,𝜑𝜑𝑥𝑥𝑥𝑥𝑥𝑥 (𝑝𝑝1, 𝑝𝑝2) =

⎩
⎨

⎧
4, 𝛼𝛼 = 0, 𝛾𝛾 ∈ {6,11};
2, 𝛼𝛼 ∈ {0,1}, 𝛾𝛾 = (5 − 2𝛼𝛼)𝛽𝛽;
2, 𝛼𝛼 = 2, 𝑡̂𝑡 ∙ 1 = 0, 𝛾𝛾 = 𝛽𝛽2 + 2;
0, otherwise.

� 

4 CONCLUSIONS 
In this paper, we proposed a scheme to generate efficient 
networks by interlacing bypass rings to torus. We ana-
lyzed the topological properties of many possible net-
works for systems with approximately 32,000 nodes. 
Among the networks considered, we found iBT(30 × 30 ×
36; 𝐿𝐿 = 3; 𝑙𝑙 = 〈6,12〉) is to be a superior network in nearly 
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all cases, according to our metrics of network diameter, 
node-to-node distances and their distribution, bisection 
width etc. This network is much more efficient than a 4D 
torus network with a similar level of engineering difficul-
ties and it is slightly better than a hypercube which con-
tains an excessive number of links. We also introduced a 
node-to-node distance formula for facilitating message 
routing with our new network. The methodology can be 
easily generalized to studying systems with other node 
numbers, even to analyzing networks of higher dimen-
sions. 
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Fig. 1. The bypass scheme and the node-to-node hop distance distribution for iBT(32; 𝐿𝐿 = 1; 𝑙𝑙 = 〈𝑙𝑙1, 𝑙𝑙2〉)  
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Fig. 2. All of the links in 2D iBT(8 × 8; 𝐿𝐿 = 2; 𝑙𝑙 = 〈4〉) 
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Fig. 3. The bypass scheme in 3D iBT(30 × 30 × 36; 𝐿𝐿 = 3; 𝑙𝑙 = 〈6,12〉) 
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Fig. 4. Hop distance distribution for 3D iBT(L=2) 

 
Fig. 5. Average distances and standard deviations for 3D iBT(L=2) with uniform bypass length, 𝑇𝑇(16 × 16 × 16 × 8) and 𝐻𝐻(215) networks 
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Fig. 6. Average distances and standard deviations for 3D iBT(L=2) with two bypass lengths, 𝑇𝑇(16 × 16 × 16 × 8) and 𝐻𝐻(215) networks 

 

Fig. 7. Hop distance distribution for 3D iBT(L=3), 𝑇𝑇(16 × 16 × 16 × 8) and 𝐻𝐻(215) networks 
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Fig. 8. Average distances and standard deviations for 3D iBT(L=3), 𝑇𝑇(16 × 16 × 16 × 8) and 𝐻𝐻(215) networks 

 

Fig. 9. Performance comparisons in average distance among different networks 
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TABLE 1 
TOPOLOGICAL PROPERTIES OF IBT, TORUS AND HYPERCUBE INTERCONNECTION MODELS 

iBT interconnection models 
Node 

Degree 

Hop Distance (hop) Network 
Diameter 

(hop) 

Bisection 
Width (link) 

Network 
Cost 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 × 𝑁𝑁𝑧𝑧  𝐿𝐿 𝑙𝑙 = 〈𝑙𝑙1, 𝑙𝑙2〉 Average 

Standard 
Deviation 

32 × 32 × 32 

2 

〈2〉 

8 

16.7344 5.6961 33 

2048 

264 

〈4〉 13.8593 4.9855 26 208 

〈6〉 13.3730 4.8800 26 208 

〈8〉 13.8984 4.9872 26 208 

〈16〉 16.9414 5.6963 32 256 

2 

〈4,8〉 13.1035 4.8235 24 192 

〈4,16〉 13.3257 4.8199 24 192 

〈8,16〉 13.6416 4.9104 26 208 

64 × 64 × 8 

2 

〈2〉 18.7422 6.6664 37 2048 296 

〈4〉 11.8672 3.5835 22 3072 176 

〈8〉 9.9023 2.6172 18 6120 144 

〈16〉 11.9434 3.5945 22 8192 176 

〈32〉 18.9697 6.6687 36 8192 288 

2 

〈4,8〉 9.2908 2.3277 16 4096 128 

〈4,16〉 8.5679 1.9477 14 6144 112 

〈4,32〉 9.5942 2.2946 16 6144 128 

〈8,16〉 8.7402 2.1133 16 7168 128 

〈8,32〉 8.9987 2.0954 16 7168 128 

〈16,32〉 11.5198 3.4786 22 8192 176 

30 × 30 × 36 
3 

〈3〉 10.3464 2.8542 19 3600 152 

〈6〉 8.2800 1.9675 15 5400 120 

〈9〉 8.8034 2.2895 16 7200 128 

〈12〉 8.8827 2.3044 15 9000 120 

〈15〉 11.3114 3.3441 21 7560 168 

3 〈𝟔𝟔,𝟏𝟏𝟏𝟏〉 7.5152 1.5288 12 7200 96 

3D Torus(32 × 32 × 32) [1-4] 6 24.0000 8.0312 48 2048 288 

4D Torus(16 × 16 × 16 × 8) 8 14.0000 4.2426 28 4096 224 

Hypercube(215) 15 7.5000 1.9365 15 16384 225 

PEC(256 × 128) (32,768 nodes) [17]  8 8.9068 1.8342 15 1920 120 

2D SRT(128 × 128) (16,384 nodes) [18]  8 7.8904 1.6543 13 1664 104 

2D SRT(256 × 256) (65,536 nodes) [18]  8 10.0529 1.9974 16 3840 128 

RDT(2,4,1)/𝛼𝛼(128 × 128)(16,384 nodes) [20]  8 6.6113 1.2340 10 5632 80 

RDT(2,4,1)/𝛼𝛼(256 × 256)(65,536 nodes) [20]  8 7.8076 1.4521 12 23552 96 

CCC 11-11 (22,528 nodes) [12]  3 15.2685 2.8432 25 1024 75 

CCC 12-12 (49,152 nodes) [12]  3 16.9020 2.9487 28 2048 84 

Scalable Barrel Shifter (32,768 nodes) [25]  29 5.1111 1.1000 8 49150 232 

de Bruijn Graph 𝐷𝐷𝐷𝐷(4,7) (16,384 nodes) [26]  8 6.0287 0.9025 7 32768 56 

de Bruijn Graph 𝐷𝐷𝐷𝐷(4,8) (65,536 nodes) [26]  8 7.0145 0.9134 8 131072 64 

Hybrid Fat Tree (32,768 nodes) [13]  4 1 9.3334 1.6922 15 3 60 

1 : 32,768-node hybrid fat tree [13] has the average node degree of 4 while its minmum and maximum degrees are 2 and 29. 
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