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Abstract

Scheduling and resource management are important in  
optimizing  multiprocessor  cluster  resource  allocation.  
Resources must be multiplexed to service requests of varied  
importance,  and  the  policy  chosen  to  manage  this  
multiplexing can have enormous impact on throughput and  
response time.  Fairshare scheduling is  a way to manage 
application performance by dynamically allocating shares  
of system resources among competing users.  The primary 
objective of this paper is to present an in-depth case study  
of  fairshare  scheduling  In  this  case  study, an  in-depth 
sensitivity  analysis  of  the  various  tunable  parameters  in  
fair-share  scheduling  techniques  will  be  provided.  The  
starting  points  for  the  study  are  scheduler  log  files  
collected from two production systems, one a production  
industry  cluster  and the  second a university  cluster.  The  
approach  to  the  case  study  is  in  two parts.  First,  using  
well-known techniques in the field, workload models for the 
two  different  environments  are  built  and  analyzed.  
Secondly,  after  the  models  are  developed,  they  are  
presented to a fairshare scheduler under what-if scenarios.  
The  experimental  results  are  examined  to  evaluate  the  
performance of fairshare scheduling.

1. Introduction

    Scheduling computational jobs in distributed systems is a 
complex,  challenging  problem.  Scheduling  theory  is 
concerned with the effective allocation of scarce resources 
to active entities in the system over time. Resources must 
be multiplexed to service request of varied importance [1], 
and the policy that is chosen to manage this multiplexing 
has a significant effect on the throughput and response time 
of the system.  An ineffective scheduling policy may lead to 
poor  performance  of  the  whole  system.  For  example, 
problems such as indefinite blocking of an individual job, 
or a convoy effect in which many jobs can be slowed by 
having to wait behind a single job, can be caused by a bad 
scheduling algorithm.  Therefore, it is desirable to choose a 

scheduling algorithm that can maximize system utilization 
and throughput while at the same time providing acceptable 
levels  of  wait  time and response time to jobs  of  varying 
importance.  The  fairshare  scheduling algorithm is  one  of 
the solutions for the problems mentioned above.
    The main objective of this paper is to present an in-depth 
case study of fairshare scheduling in two different operating 
environments.  Fairshare  scheduling  allows  the  system to 
divide  its  resources  “fairly”  among  competing  users  or 
groups.   Most  uses of  fairshare  scheduling assume some 
intuitive understanding of what will be “fair”, but the term 
is often applied in different ways.  What seems “fair” to one 
user may not seem “fair” to another.  
    The focus of the research is on analyzing the effects of 
modifying various parameters  of  the  fairshare  scheduling 
policy  on  the  performance  of  classes  of  user  jobs  with 
different characteristics.  The focus is not on determining 
whether the achieved effect  is  more or less “fair” to one 
user  group  or  another,  which  is  generally  a  business 
decision for the operation of the overall enterprise. 
    The  approach  in  this  paper  is to  create  a  synthetic 
workload that is derived from measurements on production 
clusters, and then to use discrete event simulation to study 
the  effect  of  varying  fairshare  parameter  values  on  the 
performance  of  the  system  and  the  resulting  impact  to 
different  users.  First,  workload  models  are  built  and 
analyzed.  Secondly,  after  the  model  workloads  are 
examined, they are used as input for the study of fairshare 
scheduling.  Various what-if scenarios are tested using the 
simulation  model.  The  results  of  simulations  are  used to 
draw  conclusions  about  the  performance  of  the  system 
using fairshare scheduling. Figure 1 shows the experimental 
steps used in the paper. 
The remainder of this paper is structured as follows:

• Section  2  covers  background  material  for  Moab 
fairshare scheduling.

• Section  3  describes  the  process  of  modeling  the 
workload from Acxiom cluster system and University 
of Arkansas Supercomputer. 

• Section 4 focuses on simulation set up.
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• Section 5 presents and analyzes simulation results

Figure 1: Experiment Process

2. Background

    Fairshare  scheduling  incorporates  historical  resource 
utilization into job feasibility and priority decisions [2]. In 
fairshare scheduling each user or group is assigned a fixed 
number of shares.  The shares represent a fraction of the 
resources  that  are  available  in  the  system.  The  most 
“important”  users  or  groups  can  be  assigned  the  most 
shares.  A user’s job cannot run in the system at all if the 
user has no share. 
    Fairshare algorithms typically use the share assignment 
and a dynamic priority formula to calculate a job’s dynamic 
priority. In addition to more shares, higher priorities can be 
assigned to  the most  important  users.  There  are  multiple 
ways  of  allocating  resources  if  two  users  with  different 
priority  compete  for  resources.   For  example,  the  most 
important  user  can  have  all  the  resources,  or  the  most 
important user can get more resources according to some 
proportional  distribution.   Or,  the  two users  can  get  the 
same  level  of  resources.  Fairshare  scheduling  variations 
include  lottery  scheduling,  stride  scheduling,  max-min 
fairshare scheduling, and hierarchical share scheduling [3] 
[4] [5]. In each one of these fairshare scheduling algorithms 
different parameters are used to optimize the “fairness”. In 
this paper, we focus on a case study of fairshare scheduling 
that is implemented in the Moab scheduler.

2.1 Fairshare parameters

    Moab fairshare scheduling allows utilization targets (i.e., 
shares) to be set for users, groups, and classes. The target 
utilization is based on the usage during “windows” of time, 
and  shares  can  be  configured at  the  system level,  at  the 
group level, and at the user level.  The dynamic priority of a 
job is a calculation based on the proportion of the target 
utilization that has been used. Parameters for the calculation 
of  the  dynamic  priority  include  the  Fairshare_Interval 
(FS_INTERVAL),  Fairshare_Depth  (FS_DEPTH),  and 
Fairshare Decay (FS_DECAY) [6], defined as follows: 

• FS_INTERVAL: Duration of each fairshare window.  

• FS_DEPTH:  Number  of  fairshare  windows  factored 
into the current fairshare utilization calculation. 

• FS_DECAY:  Decay  factor  applied  to  weighting  the 
contribution of each fairshare window in the past. 

Figure 2: Fairshare Example Graph [from 6]

    Figure  2  illustrates  how  the  Moab  fairshare  system 
divides the present and past time into a number of distinct 
fairshare windows.  In the figure Window 0 is the present 
window.  Window 1 is the window in the most immediate 
past, Window 2 happened just before window 1, and so on. 
The  FS_INTERVAL parameter  specifies  the  duration  of 
each window while the FS_DEPTH parameter indicates the 
number of windows to consider. The total time evaluated by 
the Moab fairshare scheduling algorithm is FS_INTERVAL 
* FS_DEPTH.  
    The FS_DECAY parameter allows the impact of an older 
fairshare window to be  limited according  to its  age.  The 
value of decay factor is usually is in the range between zero 
and one. If the FS_DECAY parameter is less than one then 
utilization  during  the  most  recent  fairshare  window 
contributes more to a total fairshare usage calculation than 
utilization  during  older  windows  [7].   The  formula  also 
allows the FS_DECAY parameter to be set to a value that is 
greater  than  one,  in  which  case  the  utilization  in  older 
windows contributes more to the fairshare usage calculation 
than utilization in the present window.
    FS_INTERVAL,  FS_DEPTH,  and  FS_DECAY  are 
global variables that are used for all groups and users in the 
system.  In  addition,  the  parameter  FS_TARGET  can  be 
applied to each user, group, or account. The FS_TARGET 
parameters  allow  fairshare  information  to  affect  job 
priority. 
    Once all these parameters are known, they can be applied 
to the formula below to calculate the usage of a user:
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Equation 1: Usage Calculation
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    The example below shows how to use FS_INTERVAL, 
FS_DEPTH and FS_DECAY to calculate  the  usage  of  a 
user and use FS_TARGET to decide the priority of a user. 

Table 1: Fairshare Example Table

Suppose that parameters are set as follows:
FS_INTERVAL 12:00:00
FS_DEPTH 4
FS_DECAY 0.7
USERCFG [A] FSTARGET = 40
Based on the information provided in Table 1, the fairshare 
usage for user A would be calculated as follows: 
Usage = (60 + 0.7^1 * 40 + 0.7^2 * 50 + 0.7^3 * 80) /  
(110 + 0.7^1*125 + 0.7^2*100 +0.7^3*150) = 47.91%
With these parameters the usage of user A is larger than the 
FS_TARGET that is set equal to 40.  The priority of user A 
is reduced and the job submitted by user A have to wait in 
the queue longer than other jobs that belong to a user who 
has higher priority. However, if the FS_DEPTH is set to 3, 
the usage of user A is now calculated as:
Usage  =  (60  +  0.7^1*40  +  0.7^2  *  50)  /  (110  + 
0.7^1*125+ 0.7^2 * 100) = 38.65%
    With the FS_DEPTH set to 3, the fairshare usage of user 
A is smaller than the FS_TARGET and the priority of User 
A is increased.  The high usage of User A in Window 3 is 
no longer  counted  in  the  fairshare  usage  calculation.   In 
general,  the  longer  the  total  time  evaluated  by  fairshare 
(FS_INTERVAL * FS_DEPTH), the more history usage of 
a user or group is taken into account. A policy that includes 
a  history  of  usage  in  previous  windows  allows  users  or 
groups  who  consume  less  system  usage  in  previous 
windows  to  have  more  priority  in  the  current  window. 
However, the example illustrates how a small change in the 
value of a single fairshare parameter can change the priority 
of a user. Depending on how resources are then allocated, 
the parameters can impact the performance of the system 
significantly.

3. Workload Modeling

3.1 Workload Trace 

    Workload modeling always starts with measured data 
about the workload. This is often recorded as a trace, or log, 
of  workload-related  events  that  happened  in  a  certain 
system. The  workload trace  for  this  paper is  a  workload 

trace  that  has  been  acquired  from  the  job  scheduler 
monitoring  system  of  two  kinds  of  clusters:  Acxiom 
Corporation  Cluster  and  University  of  Arkansas  Red 
Diamond Supercomputer 

3.1.1 The Acxiom Workload Trace

    The workload trace in the case study was measured from 
a production cluster at Acxiom Corporation during March 
2006.  The  Acxiom’s scheduler  records  job  attributes  and 
performance  data  in  an  accounting  log.  Each  workload 
element contains job information, such as job ID,  submit 
time,  queue  time,  runtime,  number  of  compute  nodes 
required, and other attributes. The job runtime is defined as 
the time between the job start time and the completion of 
the job.  Job queue time is defined as the time between job 
submission and job start time. Each submitted job places a 
certain load on the system by demanding resources, which 
includes dedicated resources such as compute nodes,  and 
shared  resources  such  as  network,  storage,  and  other 
services [8]. Some attributes are intrinsic to the jobs, such 
as  arrival  time and  nodes  required.  But  job  performance 
related  attributes  are  dependent  on  specific  system 
configuration and loading conditions,  such as queue time 
and response time. Figure 3 below shows a portion of a log 
file that was obtained from Acxiom cluster system.

Figure 3: Acxiom Workload Trace

3.1.2 University of Arkansas Workload Trace 

    Red  Diamond  is  a  cluster  of  128  dual-processor 
computers  with  64-bit  Intel®  Xeon™  processor.  The 
computers are interconnected with an InfiniBand network. 
The  main purpose  of  Red Diamond is  to  provide  a  high 
performance environment for researchers at the University 
of Arkansas. There are about 1500 jobs that are submitted 
to Red Diamond each month. The log files are stored in a 
MySQL  database.  Compared  to  the  Acxiom  enterprise 
cluster workload, the Red Diamond workload is much more 
diverse  in  that  the  application  types  range  from  data-
intensive  parallel  applications  to  computation  intensive 
serial applications. In addition, the job arrival pattern is also 
different from that of commercial systems. The workload 
trace  file  that  was  used  in  this  case  study  was  obtained 
during a four-month period from August to November of 
2007.  Each  workload  element  in  this  trace  file  contains 
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almost  the  same  job  information  as  Acxiom’s  workload 
trace.  Although  the  contents  of  both  Acxiom  and  Red 
Diamond workloads are similar, there are some differences, 
such as number of users, number of groups, average arrival 
time, and average response time.

3.2. Workload Characterization

    Workload characterization is  a  process to construct  a 
concise description of the workload based on the input trace 
data and other  information that  may be  known about the 
execution  environment.  The  trade-off  in  workload 
characterization  is  between  complexity  and  predictive 
power [9]. While the original trace data set contains very 
detailed information about the user load that is placed on 
the cluster system, it  is difficult  to construct  a prediction 
workload  from the  trace  data  alone.  Factors  such  as  the 
number of nodes requested by a particular job, the overall 
run time, and the amount and rate of data read or written 
may not be uniform over a measurement period [10].
    The  first  step  of  workload  characterization  is  trace 
analysis. In trace analysis, the observed workload traces are 
studied carefully to provide insight  to the composition of 
the  workload  and  to  identify  job  features  for  workload 
modeling.  Well-known  statistical  analysis  techniques  are 
used to understand the overall characteristics, such as the 
distributions  of  job  arrivals,  node  requirements,  and 
runtimes. In this step, jobs can be divided into classes and 
each  class  then  can  be  modeled  individually.  This 
hierarchical  case-by-case  approach  also  significantly 
simplifies the workload characterization process.  
In  this paper, two different  techniques are used to divide 
jobs into classes. In the first technique, jobs are divided into 
classes based on job size, which is the number of compute 
nodes required by a job running on a system. The second 
way is to divide  jobs  based on user group [11].  Each of 
these  techniques  provides  a  different  view  of  the 
performance of the whole cluster. 

3.2.1 Job Size

    In both the Acxiom cluster and Red Diamond, nodes are 
acquired  by  jobs  and  are  used exclusively  by  those  jobs 
until job completion. It is an important job attribute as the 
availability of nodes in the system and the number of nodes 
requested by a job largely determines the user job queue 
time in the system [11][12].  With Acxiom’s workload, the 
workload characterization process was performed based on 
job  size  basis.  In  the  trace,  there  are  about  30  different 
groups of user, so that each group does not have many jobs. 
If one had done the workload characterization based on user 
group,  it  would  have  been  difficult  to  analyze  the  trace. 
Therefore, job size is used rather than user group. 

Figure 4: Job Distribution by Job Size

    In Figure 4, jobs on the Acxiom cluster are divided into 
job size buckets and are also color-coded according to their 
arrival time ranges, i.e. peak-hours (8am-5pm), non-peak-
hours (5pm- 8am), and weekend hours. As shown, the one, 
two, and 16 job size buckets contain the great majority of 
all jobs. Almost 40% of the jobs request only one node. The 
number of jobs in the 2_node group and the 16_node are 
group almost equal to each other. The numbers of jobs in 
those groups are relatively larger than the numbers of jobs 
in the 4_node and 12_node group. 8_node group has the 
smallest amount of jobs; it is about 10 times smaller than 
number of jobs in the 1_node group. 
After  dividing  jobs  into  several  classes  according  to  job 
size, the average runtime and average arrival rate of each 
class  were  calculated.  Both  of  these  statistics  can  be 
obtained easily from our workload traces. It  is  worthy to 
mention that  although the  number of  jobs  in  the  1_node 
group is larger than the number of jobs in other groups, the 
average run time of the 1_node group is the smallest. The 
average runtime of the 16_node group is the largest. Table 
2 shows the average runtime of each group in the Acxiom 
workload.  These  statistics  are  used  later  to  evaluate  the 
performance of each group in the system.

Group Average Runtime (minutes)
1_node 5.83
2_node 15.36
4_node 13.27
8_node 14.25
12_node 17.82
16_node 29.64

Table 2: Average Runtime per Group - Acxiom 
Workload

3.2.2 User-Group
    Another way to perform job class separation is to divide 
jobs  based  on  user  group  [8].  Usually  in  a  system each 
individual user belongs to a specific group, and each group 
has different characteristic from other groups. For instance, 
for the Red Diamond cluster, three different user groups are 
defined,  the  Physics  group,  the  Chemistry  group,  and 
others. Each of these groups has distinctive characteristics 
in term of job size, runtime and arrival rate. 
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Red Diamond’s workload is very different from Acxiom’s 
workload.  Using a typical K-means clustering algorithm on 
the  Red Diamond workload  identifies  about  40  different 
groups by job size.  In contrast, the same algorithm applied 
to Acxiom’s trace identifies about six groups by job size. 
Figure 5 shows the jobs distribution of the Red Diamond 
workload trace according to user group. In the figure, the 
number of jobs in Others group is about 80% of the whole 
workload.  Based on job count the Physics group is only 
about 15% of all jobs, and the remaining 5% of jobs are in 
the Chemistry group. 

Figure 5: Job Distribution by User-Group

    Although the number of jobs  in the Physics group is 
small compared to the Others group, the average runtime 
and  job  size  of  these  jobs  is  much  larger.  The  average 
runtime  of  jobs  in  the  Physics  group  is  about  24  times 
larger than the average runtime of jobs in the Others group. 
Table  3  shows the average  runtime and job size  of each 
group in Red Diamond workload.

Group Average Runtime 
(hours)

Average  Job 
Size

Physics 47.8 13
Chemistry 4.89 8
Others 2.63 2

Table 3: Average Runtime per Group - Red Diamond 
Workload

3.3 Workload Modeling

    Several synthetic workloads which have characteristics 
derived from the original workload traces were developed 
for  use  in  this  study.  Although  the  original  workload 
provides all of the job information needed in this study, it is 
too detailed to provide insight about the workload and it is 
also  too  complicated  to  be  manipulated  for  performance 
studies. A useful workload model should be simple enough 
to  be  manipulated  to  represent  futuristic  or  hypothetical 
workloads.   Synthetic  workload traces have  a number of 
advantages over original traces such as adjustment ability, 
controlled  modification  ability,  adding  features  ability, 
generalization  ability  and  repetition  ability.  Workload 
attributes such as runtime, arrival rate, and number of jobs 

can  be  summarized  by  statistics  or  represented  by  a 
distribution function. Research by Lu shows that the hyper-
exponentional distribution is a good match to the measured 
arrival  rate  distribution [5].  The average  runtime and job 
size of each group in the synthetic workload are the same as 
the average runtime and job size of each group in the real 
workload trace. 
    The workload characterization module utilizes an XML 
file to express an output summary from the characterization 
process. The XML file contains several important attributes 
of  each  job  class  such  as  average  arrival  rate,  average 
runtime  and  number  of  jobs.  The  combination  of 
hierarchical  clustering  techniques  and  the  XML  output 
format allows a user to look at the different groups within 
the data in a level-by-level manner. This is helpful when 
performing trend analysis or identifying any abnormal sets 
of  jobs  in  the  data.  The  XML  file  can  be  fed  into  the 
Integrated Capacity Planning Environment (ICPE) tool to 
generate a synthetic workload [13]. 

4. Experimental Setup 

    The experiments are set up to study the impact of each 
fairshare  parameter  on  the  performance  of  the  whole 
system. The measured performance in this study is response 
time.
    When one parameter is examined, its value is changed 
throughout  the  experiment  and  the  values  of  other 
parameters are fixed to a set value. In this way, it is simple 
to see how much effect that parameter has on the system. 
For example, when FS_INTERVAL is studied, its value is 
increased  from  1  to  9,  FS_DECAY  is  set  to  0.7, 
FS_DEPTH is set to 7 windows, and FS_TARGET of each 
group  is  set  to  equal  to  the  percentage  runtime  of  that 
group. Because the main purpose of this experiment is to 
learn  about  FS_INTERVAL,  so  the  values  of  both 
FS_DEPTH and FS_DECAY are selected so that they did 
not have much impact on the system. 
   It is a bit more complicated to obtain the FS_TARGET. It 
took several steps to determine this value. First, from the 
workload file, the total runtime of every job in the whole 
workload is calculated. Second, also from the workload file, 
the total runtime of every job in one group is calculated. 
Then we have: 
FS_TARGET = (total runtime of group/total runtime of the  
whole workload)*100
 Each experiment is run several times to observe the change 
in response time.

5. Result and Analysis

    In this section, all the results are presented and analyzed. 
The first three experiments show the effect of each fairshare 
parameter  such  as  FS_INTERVAL,  FSDECAY,  and 
FS_TARGET. Since both FS_INTERVAL and FS_DEPTH 
represent  the  evaluated  time  by  fairshare  scheduler,  this 
section only shows the result of FS_INTERVAL. The next 
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four experiments provide  the graphs resulting from study 
the combination of two parameters such as FS_INTERVAL 
and  FS_DEPTH,  or  FS_INTERVAL  and  FS_DECAY. 
Another way to study fairshare is to increase the intensity of 
the arrival rate of a workload to observe the effect on the 
performance.  This  will  be  shown  in  the  last  two 
experiments.

5.1   Fairshare Interval

    The  first  experiment  studies  the  impact  of  the 
FS_INTERVAL  parameter  on  both  Red  Diamond  and 
Acxiom workloads. 

5.1.1 Red Diamond Workload

FS_DEPTH = 7 windows FS_TARGET  [Physics]  = 
65

FS_DECAY = 0.7 FS_TARGET  [Chemistry] 
= 20
FS_TARGET [Others] = 15

Table 4: Fairshare Interval on Red Diamond Data

    Figure 6 shows the change in average response time of 
each  group as  the  value  of  FS_INTERVAL increases.  It 
appears that, as the value of FS_INTERVAL increases, the 
average  response  time of  both  the  Chemistry  and Others 
group decrease somewhat, but the average response time of 
the Physics group increases.

Figure 6: Fairshare Interval on Red Diamond data

    As mentioned in the workload characterization section, 
the average runtime of Physics group is much higher than 
the average runtime of both Chemistry and Others groups. 
Also,  the  average  job  size  of  the  Physics  group  is  13 
processors and 48 hours. Compared to the average job size 
of  the  “Others”  group  (4  processors  and  2.6  hours),it  is 
clear  that  the  Physics  group  uses  significantly  more 
resources.  The question is why the Physics group's jobs' 
average  response  time  increases  as  the  value  of 
FS_INTERVAL  increases?   As  the  FS_INTERVAL 
increases, the total time evaluated by the scheduler in each 
window is longer, so it makes the total usage of the Physics 

group in each window larger. As the total usage increases, 
the fairshare algorithm reduces priority. This reduction in 
priority increases the wait time of each Physics job.  As the 
average wait time of the Physics group becomes longer, the 
average wait time of other groups decreases.
    Another  issue  that  needs  to  be  addressed  is  system 
utilization.  In  figure  6,  when  FS_INTERVAL  equals  3 
days, it appears that the average response times of all three 
groups are  at  their  smallest.  So why can we just  set  the 
FS_INTERVAL to 3 and get the lowest average response 
time? Figure 7 shows how the  utilization changes as  the 
FS_INTERVAL increases.

Figure 7: Utilization Red Diamond

    In  Figure  7,  as  the  FS_INTERVAL  increases,  the 
utilization of the system also increases. The reason that the 
system utilization increases is because the average response 
time of the Physics group increases. When FS_INTERVAL 
equals 3, the average response time of the Physics group is 
small, which means the Physics group has high priority. As 
mentioned, the Physics jobs require a big average job size. 
So,  for  example,  some  Physics  jobs  have  the  highest 
priority  and they  all  request  50 processors  to  run.  If  the 
system  just  has  30  processors  available,  then  those  jobs 
have to wait until there are enough processors.  Those jobs 
will block all small jobs with lower priority and make 30 
processors  stay  idle.  This  behavior  lowers  system 
utilization.  As  FS_INTERVAL  increases,  the  average 
response time of the Physics group increases. If the Physics 
group's  jobs  do not have high  priority,  system utilization 
increases. 
    Therefore,  when  considering  the  value  of 
FS_INTERVAL,  both  average  response  time and  system 
utilization must be  taken into account.  It  depends on the 
desired outcome of the system administrator to select the 
value of FS_INTERVAL.

5.1.2 Acxiom Workload

    The Acxiom workload is characterized differently from 
the  Red  Diamond  workload.  However,  in  both  of  these 
workloads there is a group that dominates in term of both 
runtime and job size. In Red Diamond workload, that group 
is the Physics group.  In the Acxiom workload, that group is 
the 16_node group. So, as the values of the FS_INTERVAL 
increases, it is expected that the average response time of 

6



the 16_node group would increase. Figure 8 clearly 
supports this argument. However, Figure 8 shows not only 
the increase in response time of the 16_node group, but also 
the increase in the average response time of the 12_node 
group. Although, the increase in the 12_node group is not 
significant,  it  still  shows  that  the  12_node  group  is  the 
second dominant group in the workload. 

Table 5: Fairshare Interval on Acxiom Workload

Figure 8: Fairshare Interval on Acxiom Workload

    The utilization of the system during this experiment is 
shown in Figure 9. Similar to the Red Diamond workload, 
as the FS_INTERVAL increases, the system utilization also 
increases.  The  increase  in  average  response  time  of  the 
16_node group makes the system utilization also increase.

Figure 9: Utilization Acxiom Workload

5.2   Fairshare Decay

    The second experiment is to study the impact of the 
FS_DECAY parameter on both workloads.

5.2.1 Red Diamond Workload

Table 6: Fairshare Decay on Red Diamond Workload

    Figure 10 shows the result of increasing the value of 
FS_DECAY.  The  result  is  not  much  different  than  the 
results  shown  for  Interval  variation.  The  only  thing  that 
stands out from the graph is that the increase in the average 
response time of the Physics group is more dramatic than 
the result with FS_INTERVAL. It increases from 64.32 to 
71.61 compared to the last graph that increases from 66.12 
to 71.38. From this experiment, the change in FS_DECAY 
has  more  impact  on  the  system  than  the  change  in 
FS_INTERVAL.

Figure 10: Fairshare Decay on Red Diamond Workload

    Similar to previous experiment, as the FS_DECAY 
increases, the system utilization also increases.

5.2.2 Acxiom Workload

Table 7: Fairshare Decay on Acxiom Workload

    The conclusion with the Red Diamond workload can also 
be applied to Acxiom workload. The average response time 
of  the  16_node  group  increases  significantly  and  the 
average response time of other groups decrease. Figure 11 
shows the result of this experiment.

.

FS_DEPTH =3windows FS_target[1_node] = 14 
FS_target[8_node] = 12

FS_DECAY = 0.7 FS_target[2_node] = 6 
FS_target[12_node] = 15

FS_target[4_node] = 15 
FS_target[16_node] = 38

FS_INTERVAL = 7 days FS_TARGET [Physics] = 65
FS_ DEPTH = 7 windows FS_TARGET [Chemistry] = 

20
FS_TARGET [Others] = 15

FS_DEPTH = 3 
windows

FS_target[1_node] = 14 
FS_target[8_node] = 12

FS_INTERVAL = 
3 days

FS_target[2_node] = 6 
FS_target[12_node] = 15

FS_target[4_node] = 15 
FS_target[16_node] = 38
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Figure 11: Fairshare Decay on Acxiom Workload

5.3   Fairshare Target

    The next parameter that is examined is FS_TARGET. In 
theory, FS_TARGET may have more impact than other 
parameters because it has a direct influence on the priority 
of each group. 

5.3.1 Red Diamond Workload

    The way to set up this experiment is different compared 
to the previous experiments. FS_INTERVAL, FS_DEPTH 
and FS_DECAY are set to constant values.  The values of 
FS_TARGET of each group are changed. In this case, the 
FS_TARGET  of  the  Physics  group  will  decrease  and 
FS_TARGET  of  Chemistry  and  “Others”  will  increase. 
However,  the  sum  of  all  FS_TARGET  parameters  must 
equal 100 since it is equal to the percentage runtime of each 
group.The maximum possible usage of the system is 100%, 
so the maximum possible FS_TARGET must also be 100.

Table 8: Fairshare Target on Red Diamond Workload

    Figure 12 shows that as the FS_TARGET decreases, the 
average  response  time of  the  Physics  group increases.  A 
smaller FS_TARGET means lower priority, makes the jobs 
of the Physics group wait longer.

Figure 12: Fairshare target on Red Diamond Workload

    Figure 13 shows the system utilization when varying 
FS_TARGET. The increase in average response time of the 
Physics group makes the system utilization also increase.

70

75

80

85

90

95

100

Run 1 Run 2 Run 3

Utilization (%)

FS_TARGET

Utilization

Figure 13: Utilization Red Diamond Workload

5.3.2 Acxiom Workload

    This  experiment  is  set  up  exactly  like  the  previous 
experiment.  The  setup  is  shown  in  Table  9.   Figure  14 
shows the impact  of  changing the  FS_TARGET on each 
group in the Acxiom workload. The results are even more 
interesting than what was shown in Figure 10. On the first 
run, the average response time of the 16_node group is even 
smaller  than  the  average  response  time  of  the  12_node 
group. Having a much higher FS_TARGET is the reason 
why the average response time of the 16_node group is still 
smaller  than  the  average  response  time  of  the  12_node 
group even though the average runtime and number jobs of 
the 16_node group is higher than the 12_node group. This 
result  shows how much impact  FS_TARGET has  on the 
performance  of  each  group.  As  the  FS_TARGET of  the 
16_node  group  decreases,  its  average  response  time 
increases rapidly. The 12_node group, its average response 
time decreases, as the FS_TARGET increases.

FS_DEPTH = 7 
windows

Run 1 Phys = 85 Chem = 10 
Others = 5

FS_INTERVAL = 7 
days

Run 2 Phys = 75 Chem = 15 
Others = 10

FS_DECAY = 0.7 Run 3 Phys = 65 Chem = 20 
Others = 15
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FS_DEPTH = 3 windows    FS_INTERVAL = 3 days

FS_DECAY = 0.7 

Group Run 1 Run 2 Run 3
1_node FS_TARGET

=10
FS_TARGET
=12

FS_TARGE
T=14

2_node FS_TARGET 
=2

FS_TARGET
=4

FS_TARGE
T=6

4_node FS_TARGET
=11

FS_TARGET
=13

FS_TARGE
T=15

8_node FS_TARGET
=7

FS_TARGET
=9

FS_TARGE
T=11

12_node FS_TARGET
=11

FS_TARGET
=13

FS_TARGE
T=15

16_node FS_TARGET
=58

FS_TARGET
=48

FS_TARGE
T=38

Table 9: Fairshare Target on Acxiom Workload

Figure 14: Fairshare Target on Acxiom Workload

    Similar to the Red Diamond workload, the increase in 
average  response  time  of  the  16_node  group  increases 
system utilization. It  now can be concluded that,  in both 
workloads, if the average response time of the group with 
highest average job size and highest average runtime such 
as the Physics group or the 16_node group, increases, then 
the  system  utilization  will  also  increase.  Also,  the 
utilization also increases in this case. 

5.4   Fairshare Interval and Fairshare Depth

    Up to this  point,  only one  factor  at  a  time has  been 
changed during simulation. Although the results from the 
previous parts are good, the impact of varying the fairshare 
parameters  individually  is  relatively  small.  Variations  in 
response  time  were  small,  giving  the  impression  that 
changing fairshare parameters  affects  workload execution 
very  little.  This  section  provides  a  different  look  at  the 
results.  Instead of just  FS_INTERVAL or FS_DEPTH, it 
will  be  the  combination  of  both  parameters.  The  result 
analysis  of  this  experiment  is  based  on  Red  Diamond 
workload.

FS_DECAY = 0.7 FS_TARGET [Physics] = 
65

FS_TARGET [Chemistry] 
= 20

FS_TARGET [Others] = 
15

Table 10: Fairshare Interval and Fairshare Depth on 
Red Diamond Workload

    In this experiment both FS_INTERVAL and FS_DEPTH 
parameters  are  varied.  FS_DECAY  and  FS_TARGET 
remain fixed. Figure 15 shows the change in response time 
of both Physics and Chemistry groups.  The x-axis is the 
FS_INTERVAL, the y-axis is the FS_DEPTH and the z-
axis is the average response time. Similar to the graph in 
section 5.1, the average response time of the Physics group 
increases and the average response time of the Chemistry 
group decreases. However, compared to figure 6, it is clear 
that  the  gap  between  two  surfaces  gets  bigger  as  the 
parameters increase. This means the change in the average 
response  time  of  both  Physics  and  Chemistry  are  more 
significant than the previous experiments.

Figure 15: Fairshare Interval and Fairshare Depth on 
Red Diamond Workload

6. Experimental Summary

 The  goal  of  this  research  is  to  conduct  a  performance 
analysis of fairshare scheduling for two different case study 
environments.  First,  a  workload  model  was  built  and 
analyzed. The workload models have been built to capture 
all  the  essential  attributes  of  the  actual  workloads. 
Statistical analysis and graphical techniques have been used 
to perform the actual workload analysis. The second part is 
to study the impact of fairshare scheduling on the model 
workloads.  In order to evaluate the impact of each fairshare 
parameter on the performance, ten experiments have been 
completed.  As the value of each parameter is  varied,  the 
results  are  different.  Following  are  the  highlights  of  all 
experiments:
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• As  FS_INTERVAL,  FS_DEPTH,  and  FS_DECAY 
increase, the average response time of the group, which 
has a high average runtime, high average job size, and 
large number of jobs, increases. On the other hand, the 
average response time of the group that has a smaller 
average runtime, average job size and number of job, 
decreases.

• Changes  to  FS_DECAY  have  more  impact  than 
changes  to  FS_INTERVAL  or  FS_DEPTH.  When 
FS_DECAY increases, the change in response time is 
more significant than when FS_INTERVAL increases.

• Changes to FS_TARGET have the most impact on the 
performance.  One  can  easily  change  the  whole 
outcome of a system by changing FS_TARGET. 

• Increasing the values of two parameters at  once will 
change  the  performance  more  rapidly  than  just  one 
parameter

7. Conclusion

    Fairshare scheduling is a dynamic scheduling algorithm 
to  use  in  clusters  and  grid.  This  research  has  presented 
several experiments that study the effect of each fairshare 
parameter.  From  the  results,  although  it  appears  that 
varying  FS_TARGET  is  the  best  way  to  control  usage, 
other paramters such as FS_INTERVAL, FS_DEPTH, and 
FS_DECAY still have a big part in the whole algorithm.
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