
Fairshare Scheduling – A Case Study

Hung Bui, Wesley Emeneker, Amy Apon
University of Arkansas

{hbui, ewe, aapon}@uark.edu

Doug Hoffman
Acxiom Corporation

Doug.Hoffman@acxiom.com

Larry Dowdy
Vanderbilt University

Larry.Dowdy@vanderbilt.edu

Abstract

Scheduling and resource management are important in
optimizing multiprocessor cluster resource allocation.
Resources must be multiplexed to service requests of varied
importance, and the policy chosen to manage this
multiplexing can have enormous impact on throughput and
response time. Fairshare scheduling is a way to manage
application performance by dynamically allocating shares
of system resources among competing users. The primary
objective of this paper is to present an in-depth case study
of fairshare scheduling In this case study, an in-depth
sensitivity analysis of the various tunable parameters in
fair-share scheduling techniques will be provided. The
starting points for the study are scheduler log files
collected from two production systems, one a production
industry cluster and the second a university cluster. The
approach to the case study is in two parts. First, using
well-known techniques in the field, workload models for the
two different environments are built and analyzed.
Secondly, after the models are developed, they are
presented to a fairshare scheduler under what-if scenarios.
The experimental results are examined to evaluate the
performance of fairshare scheduling.

1. Introduction

 Scheduling computational jobs in distributed systems is a
complex, challenging problem. Scheduling theory is
concerned with the effective allocation of scarce resources
to active entities in the system over time. Resources must
be multiplexed to service request of varied importance [1],
and the policy that is chosen to manage this multiplexing
has a significant effect on the throughput and response time
of the system. An ineffective scheduling policy may lead to
poor performance of the whole system. For example,
problems such as indefinite blocking of an individual job,
or a convoy effect in which many jobs can be slowed by
having to wait behind a single job, can be caused by a bad
scheduling algorithm. Therefore, it is desirable to choose a

scheduling algorithm that can maximize system utilization
and throughput while at the same time providing acceptable
levels of wait time and response time to jobs of varying
importance. The fairshare scheduling algorithm is one of
the solutions for the problems mentioned above.
 The main objective of this paper is to present an in-depth
case study of fairshare scheduling in two different operating
environments. Fairshare scheduling allows the system to
divide its resources “fairly” among competing users or
groups. Most uses of fairshare scheduling assume some
intuitive understanding of what will be “fair”, but the term
is often applied in different ways. What seems “fair” to one
user may not seem “fair” to another.
 The focus of the research is on analyzing the effects of
modifying various parameters of the fairshare scheduling
policy on the performance of classes of user jobs with
different characteristics. The focus is not on determining
whether the achieved effect is more or less “fair” to one
user group or another, which is generally a business
decision for the operation of the overall enterprise.
 The approach in this paper is to create a synthetic
workload that is derived from measurements on production
clusters, and then to use discrete event simulation to study
the effect of varying fairshare parameter values on the
performance of the system and the resulting impact to
different users. First, workload models are built and
analyzed. Secondly, after the model workloads are
examined, they are used as input for the study of fairshare
scheduling. Various what-if scenarios are tested using the
simulation model. The results of simulations are used to
draw conclusions about the performance of the system
using fairshare scheduling. Figure 1 shows the experimental
steps used in the paper.
The remainder of this paper is structured as follows:

• Section 2 covers background material for Moab
fairshare scheduling.

• Section 3 describes the process of modeling the
workload from Acxiom cluster system and University
of Arkansas Supercomputer.

• Section 4 focuses on simulation set up.

1

• Section 5 presents and analyzes simulation results

Figure 1: Experiment Process

2. Background

 Fairshare scheduling incorporates historical resource
utilization into job feasibility and priority decisions [2]. In
fairshare scheduling each user or group is assigned a fixed
number of shares. The shares represent a fraction of the
resources that are available in the system. The most
“important” users or groups can be assigned the most
shares. A user’s job cannot run in the system at all if the
user has no share.
 Fairshare algorithms typically use the share assignment
and a dynamic priority formula to calculate a job’s dynamic
priority. In addition to more shares, higher priorities can be
assigned to the most important users. There are multiple
ways of allocating resources if two users with different
priority compete for resources. For example, the most
important user can have all the resources, or the most
important user can get more resources according to some
proportional distribution. Or, the two users can get the
same level of resources. Fairshare scheduling variations
include lottery scheduling, stride scheduling, max-min
fairshare scheduling, and hierarchical share scheduling [3]
[4] [5]. In each one of these fairshare scheduling algorithms
different parameters are used to optimize the “fairness”. In
this paper, we focus on a case study of fairshare scheduling
that is implemented in the Moab scheduler.

2.1 Fairshare parameters

 Moab fairshare scheduling allows utilization targets (i.e.,
shares) to be set for users, groups, and classes. The target
utilization is based on the usage during “windows” of time,
and shares can be configured at the system level, at the
group level, and at the user level. The dynamic priority of a
job is a calculation based on the proportion of the target
utilization that has been used. Parameters for the calculation
of the dynamic priority include the Fairshare_Interval
(FS_INTERVAL), Fairshare_Depth (FS_DEPTH), and
Fairshare Decay (FS_DECAY) [6], defined as follows:

• FS_INTERVAL: Duration of each fairshare window.

• FS_DEPTH: Number of fairshare windows factored
into the current fairshare utilization calculation.

• FS_DECAY: Decay factor applied to weighting the
contribution of each fairshare window in the past.

Figure 2: Fairshare Example Graph [from 6]

 Figure 2 illustrates how the Moab fairshare system
divides the present and past time into a number of distinct
fairshare windows. In the figure Window 0 is the present
window. Window 1 is the window in the most immediate
past, Window 2 happened just before window 1, and so on.
The FS_INTERVAL parameter specifies the duration of
each window while the FS_DEPTH parameter indicates the
number of windows to consider. The total time evaluated by
the Moab fairshare scheduling algorithm is FS_INTERVAL
* FS_DEPTH.
 The FS_DECAY parameter allows the impact of an older
fairshare window to be limited according to its age. The
value of decay factor is usually is in the range between zero
and one. If the FS_DECAY parameter is less than one then
utilization during the most recent fairshare window
contributes more to a total fairshare usage calculation than
utilization during older windows [7]. The formula also
allows the FS_DECAY parameter to be set to a value that is
greater than one, in which case the utilization in older
windows contributes more to the fairshare usage calculation
than utilization in the present window.
 FS_INTERVAL, FS_DEPTH, and FS_DECAY are
global variables that are used for all groups and users in the
system. In addition, the parameter FS_TARGET can be
applied to each user, group, or account. The FS_TARGET
parameters allow fairshare information to affect job
priority.
 Once all these parameters are known, they can be applied
to the formula below to calculate the usage of a user:

∑

∑

=

=

∗

∗
=

N

i
i

i

N

i
i

i

Tdecay

tdecay
Usage

0

0

Equation 1: Usage Calculation

2

 The example below shows how to use FS_INTERVAL,
FS_DEPTH and FS_DECAY to calculate the usage of a
user and use FS_TARGET to decide the priority of a user.

Table 1: Fairshare Example Table

Suppose that parameters are set as follows:
FS_INTERVAL 12:00:00
FS_DEPTH 4
FS_DECAY 0.7
USERCFG [A] FSTARGET = 40
Based on the information provided in Table 1, the fairshare
usage for user A would be calculated as follows:
Usage = (60 + 0.7^1 * 40 + 0.7^2 * 50 + 0.7^3 * 80) /
(110 + 0.7^1*125 + 0.7^2*100 +0.7^3*150) = 47.91%
With these parameters the usage of user A is larger than the
FS_TARGET that is set equal to 40. The priority of user A
is reduced and the job submitted by user A have to wait in
the queue longer than other jobs that belong to a user who
has higher priority. However, if the FS_DEPTH is set to 3,
the usage of user A is now calculated as:
Usage = (60 + 0.7^1*40 + 0.7^2 * 50) / (110 +
0.7^1*125+ 0.7^2 * 100) = 38.65%
 With the FS_DEPTH set to 3, the fairshare usage of user
A is smaller than the FS_TARGET and the priority of User
A is increased. The high usage of User A in Window 3 is
no longer counted in the fairshare usage calculation. In
general, the longer the total time evaluated by fairshare
(FS_INTERVAL * FS_DEPTH), the more history usage of
a user or group is taken into account. A policy that includes
a history of usage in previous windows allows users or
groups who consume less system usage in previous
windows to have more priority in the current window.
However, the example illustrates how a small change in the
value of a single fairshare parameter can change the priority
of a user. Depending on how resources are then allocated,
the parameters can impact the performance of the system
significantly.

3. Workload Modeling

3.1 Workload Trace

 Workload modeling always starts with measured data
about the workload. This is often recorded as a trace, or log,
of workload-related events that happened in a certain
system. The workload trace for this paper is a workload

trace that has been acquired from the job scheduler
monitoring system of two kinds of clusters: Acxiom
Corporation Cluster and University of Arkansas Red
Diamond Supercomputer

3.1.1 The Acxiom Workload Trace

 The workload trace in the case study was measured from
a production cluster at Acxiom Corporation during March
2006. The Acxiom’s scheduler records job attributes and
performance data in an accounting log. Each workload
element contains job information, such as job ID, submit
time, queue time, runtime, number of compute nodes
required, and other attributes. The job runtime is defined as
the time between the job start time and the completion of
the job. Job queue time is defined as the time between job
submission and job start time. Each submitted job places a
certain load on the system by demanding resources, which
includes dedicated resources such as compute nodes, and
shared resources such as network, storage, and other
services [8]. Some attributes are intrinsic to the jobs, such
as arrival time and nodes required. But job performance
related attributes are dependent on specific system
configuration and loading conditions, such as queue time
and response time. Figure 3 below shows a portion of a log
file that was obtained from Acxiom cluster system.

Figure 3: Acxiom Workload Trace

3.1.2 University of Arkansas Workload Trace

 Red Diamond is a cluster of 128 dual-processor
computers with 64-bit Intel® Xeon™ processor. The
computers are interconnected with an InfiniBand network.
The main purpose of Red Diamond is to provide a high
performance environment for researchers at the University
of Arkansas. There are about 1500 jobs that are submitted
to Red Diamond each month. The log files are stored in a
MySQL database. Compared to the Acxiom enterprise
cluster workload, the Red Diamond workload is much more
diverse in that the application types range from data-
intensive parallel applications to computation intensive
serial applications. In addition, the job arrival pattern is also
different from that of commercial systems. The workload
trace file that was used in this case study was obtained
during a four-month period from August to November of
2007. Each workload element in this trace file contains

3

Fairshare
Window

Total usage of
user A

Total cluster
usage

0 60 110

1 40 125

2 50 100

3 80 150

almost the same job information as Acxiom’s workload
trace. Although the contents of both Acxiom and Red
Diamond workloads are similar, there are some differences,
such as number of users, number of groups, average arrival
time, and average response time.

3.2. Workload Characterization

 Workload characterization is a process to construct a
concise description of the workload based on the input trace
data and other information that may be known about the
execution environment. The trade-off in workload
characterization is between complexity and predictive
power [9]. While the original trace data set contains very
detailed information about the user load that is placed on
the cluster system, it is difficult to construct a prediction
workload from the trace data alone. Factors such as the
number of nodes requested by a particular job, the overall
run time, and the amount and rate of data read or written
may not be uniform over a measurement period [10].
 The first step of workload characterization is trace
analysis. In trace analysis, the observed workload traces are
studied carefully to provide insight to the composition of
the workload and to identify job features for workload
modeling. Well-known statistical analysis techniques are
used to understand the overall characteristics, such as the
distributions of job arrivals, node requirements, and
runtimes. In this step, jobs can be divided into classes and
each class then can be modeled individually. This
hierarchical case-by-case approach also significantly
simplifies the workload characterization process.
In this paper, two different techniques are used to divide
jobs into classes. In the first technique, jobs are divided into
classes based on job size, which is the number of compute
nodes required by a job running on a system. The second
way is to divide jobs based on user group [11]. Each of
these techniques provides a different view of the
performance of the whole cluster.

3.2.1 Job Size

 In both the Acxiom cluster and Red Diamond, nodes are
acquired by jobs and are used exclusively by those jobs
until job completion. It is an important job attribute as the
availability of nodes in the system and the number of nodes
requested by a job largely determines the user job queue
time in the system [11][12]. With Acxiom’s workload, the
workload characterization process was performed based on
job size basis. In the trace, there are about 30 different
groups of user, so that each group does not have many jobs.
If one had done the workload characterization based on user
group, it would have been difficult to analyze the trace.
Therefore, job size is used rather than user group.

Figure 4: Job Distribution by Job Size

 In Figure 4, jobs on the Acxiom cluster are divided into
job size buckets and are also color-coded according to their
arrival time ranges, i.e. peak-hours (8am-5pm), non-peak-
hours (5pm- 8am), and weekend hours. As shown, the one,
two, and 16 job size buckets contain the great majority of
all jobs. Almost 40% of the jobs request only one node. The
number of jobs in the 2_node group and the 16_node are
group almost equal to each other. The numbers of jobs in
those groups are relatively larger than the numbers of jobs
in the 4_node and 12_node group. 8_node group has the
smallest amount of jobs; it is about 10 times smaller than
number of jobs in the 1_node group.
After dividing jobs into several classes according to job
size, the average runtime and average arrival rate of each
class were calculated. Both of these statistics can be
obtained easily from our workload traces. It is worthy to
mention that although the number of jobs in the 1_node
group is larger than the number of jobs in other groups, the
average run time of the 1_node group is the smallest. The
average runtime of the 16_node group is the largest. Table
2 shows the average runtime of each group in the Acxiom
workload. These statistics are used later to evaluate the
performance of each group in the system.

Group Average Runtime (minutes)
1_node 5.83
2_node 15.36
4_node 13.27
8_node 14.25
12_node 17.82
16_node 29.64

Table 2: Average Runtime per Group - Acxiom
Workload

3.2.2 User-Group
 Another way to perform job class separation is to divide
jobs based on user group [8]. Usually in a system each
individual user belongs to a specific group, and each group
has different characteristic from other groups. For instance,
for the Red Diamond cluster, three different user groups are
defined, the Physics group, the Chemistry group, and
others. Each of these groups has distinctive characteristics
in term of job size, runtime and arrival rate.

4

Red Diamond’s workload is very different from Acxiom’s
workload. Using a typical K-means clustering algorithm on
the Red Diamond workload identifies about 40 different
groups by job size. In contrast, the same algorithm applied
to Acxiom’s trace identifies about six groups by job size.
Figure 5 shows the jobs distribution of the Red Diamond
workload trace according to user group. In the figure, the
number of jobs in Others group is about 80% of the whole
workload. Based on job count the Physics group is only
about 15% of all jobs, and the remaining 5% of jobs are in
the Chemistry group.

Figure 5: Job Distribution by User-Group

 Although the number of jobs in the Physics group is
small compared to the Others group, the average runtime
and job size of these jobs is much larger. The average
runtime of jobs in the Physics group is about 24 times
larger than the average runtime of jobs in the Others group.
Table 3 shows the average runtime and job size of each
group in Red Diamond workload.

Group Average Runtime
(hours)

Average Job
Size

Physics 47.8 13
Chemistry 4.89 8
Others 2.63 2

Table 3: Average Runtime per Group - Red Diamond
Workload

3.3 Workload Modeling

 Several synthetic workloads which have characteristics
derived from the original workload traces were developed
for use in this study. Although the original workload
provides all of the job information needed in this study, it is
too detailed to provide insight about the workload and it is
also too complicated to be manipulated for performance
studies. A useful workload model should be simple enough
to be manipulated to represent futuristic or hypothetical
workloads. Synthetic workload traces have a number of
advantages over original traces such as adjustment ability,
controlled modification ability, adding features ability,
generalization ability and repetition ability. Workload
attributes such as runtime, arrival rate, and number of jobs

can be summarized by statistics or represented by a
distribution function. Research by Lu shows that the hyper-
exponentional distribution is a good match to the measured
arrival rate distribution [5]. The average runtime and job
size of each group in the synthetic workload are the same as
the average runtime and job size of each group in the real
workload trace.
 The workload characterization module utilizes an XML
file to express an output summary from the characterization
process. The XML file contains several important attributes
of each job class such as average arrival rate, average
runtime and number of jobs. The combination of
hierarchical clustering techniques and the XML output
format allows a user to look at the different groups within
the data in a level-by-level manner. This is helpful when
performing trend analysis or identifying any abnormal sets
of jobs in the data. The XML file can be fed into the
Integrated Capacity Planning Environment (ICPE) tool to
generate a synthetic workload [13].

4. Experimental Setup

 The experiments are set up to study the impact of each
fairshare parameter on the performance of the whole
system. The measured performance in this study is response
time.
 When one parameter is examined, its value is changed
throughout the experiment and the values of other
parameters are fixed to a set value. In this way, it is simple
to see how much effect that parameter has on the system.
For example, when FS_INTERVAL is studied, its value is
increased from 1 to 9, FS_DECAY is set to 0.7,
FS_DEPTH is set to 7 windows, and FS_TARGET of each
group is set to equal to the percentage runtime of that
group. Because the main purpose of this experiment is to
learn about FS_INTERVAL, so the values of both
FS_DEPTH and FS_DECAY are selected so that they did
not have much impact on the system.
 It is a bit more complicated to obtain the FS_TARGET. It
took several steps to determine this value. First, from the
workload file, the total runtime of every job in the whole
workload is calculated. Second, also from the workload file,
the total runtime of every job in one group is calculated.
Then we have:
FS_TARGET = (total runtime of group/total runtime of the
whole workload)*100
 Each experiment is run several times to observe the change
in response time.

5. Result and Analysis

 In this section, all the results are presented and analyzed.
The first three experiments show the effect of each fairshare
parameter such as FS_INTERVAL, FSDECAY, and
FS_TARGET. Since both FS_INTERVAL and FS_DEPTH
represent the evaluated time by fairshare scheduler, this
section only shows the result of FS_INTERVAL. The next

5

four experiments provide the graphs resulting from study
the combination of two parameters such as FS_INTERVAL
and FS_DEPTH, or FS_INTERVAL and FS_DECAY.
Another way to study fairshare is to increase the intensity of
the arrival rate of a workload to observe the effect on the
performance. This will be shown in the last two
experiments.

5.1 Fairshare Interval

 The first experiment studies the impact of the
FS_INTERVAL parameter on both Red Diamond and
Acxiom workloads.

5.1.1 Red Diamond Workload

FS_DEPTH = 7 windows FS_TARGET [Physics] =
65

FS_DECAY = 0.7 FS_TARGET [Chemistry]
= 20
FS_TARGET [Others] = 15

Table 4: Fairshare Interval on Red Diamond Data

 Figure 6 shows the change in average response time of
each group as the value of FS_INTERVAL increases. It
appears that, as the value of FS_INTERVAL increases, the
average response time of both the Chemistry and Others
group decrease somewhat, but the average response time of
the Physics group increases.

Figure 6: Fairshare Interval on Red Diamond data

 As mentioned in the workload characterization section,
the average runtime of Physics group is much higher than
the average runtime of both Chemistry and Others groups.
Also, the average job size of the Physics group is 13
processors and 48 hours. Compared to the average job size
of the “Others” group (4 processors and 2.6 hours),it is
clear that the Physics group uses significantly more
resources. The question is why the Physics group's jobs'
average response time increases as the value of
FS_INTERVAL increases? As the FS_INTERVAL
increases, the total time evaluated by the scheduler in each
window is longer, so it makes the total usage of the Physics

group in each window larger. As the total usage increases,
the fairshare algorithm reduces priority. This reduction in
priority increases the wait time of each Physics job. As the
average wait time of the Physics group becomes longer, the
average wait time of other groups decreases.
 Another issue that needs to be addressed is system
utilization. In figure 6, when FS_INTERVAL equals 3
days, it appears that the average response times of all three
groups are at their smallest. So why can we just set the
FS_INTERVAL to 3 and get the lowest average response
time? Figure 7 shows how the utilization changes as the
FS_INTERVAL increases.

Figure 7: Utilization Red Diamond

 In Figure 7, as the FS_INTERVAL increases, the
utilization of the system also increases. The reason that the
system utilization increases is because the average response
time of the Physics group increases. When FS_INTERVAL
equals 3, the average response time of the Physics group is
small, which means the Physics group has high priority. As
mentioned, the Physics jobs require a big average job size.
So, for example, some Physics jobs have the highest
priority and they all request 50 processors to run. If the
system just has 30 processors available, then those jobs
have to wait until there are enough processors. Those jobs
will block all small jobs with lower priority and make 30
processors stay idle. This behavior lowers system
utilization. As FS_INTERVAL increases, the average
response time of the Physics group increases. If the Physics
group's jobs do not have high priority, system utilization
increases.
 Therefore, when considering the value of
FS_INTERVAL, both average response time and system
utilization must be taken into account. It depends on the
desired outcome of the system administrator to select the
value of FS_INTERVAL.

5.1.2 Acxiom Workload

 The Acxiom workload is characterized differently from
the Red Diamond workload. However, in both of these
workloads there is a group that dominates in term of both
runtime and job size. In Red Diamond workload, that group
is the Physics group. In the Acxiom workload, that group is
the 16_node group. So, as the values of the FS_INTERVAL
increases, it is expected that the average response time of

6

the 16_node group would increase. Figure 8 clearly
supports this argument. However, Figure 8 shows not only
the increase in response time of the 16_node group, but also
the increase in the average response time of the 12_node
group. Although, the increase in the 12_node group is not
significant, it still shows that the 12_node group is the
second dominant group in the workload.

Table 5: Fairshare Interval on Acxiom Workload

Figure 8: Fairshare Interval on Acxiom Workload

 The utilization of the system during this experiment is
shown in Figure 9. Similar to the Red Diamond workload,
as the FS_INTERVAL increases, the system utilization also
increases. The increase in average response time of the
16_node group makes the system utilization also increase.

Figure 9: Utilization Acxiom Workload

5.2 Fairshare Decay

 The second experiment is to study the impact of the
FS_DECAY parameter on both workloads.

5.2.1 Red Diamond Workload

Table 6: Fairshare Decay on Red Diamond Workload

 Figure 10 shows the result of increasing the value of
FS_DECAY. The result is not much different than the
results shown for Interval variation. The only thing that
stands out from the graph is that the increase in the average
response time of the Physics group is more dramatic than
the result with FS_INTERVAL. It increases from 64.32 to
71.61 compared to the last graph that increases from 66.12
to 71.38. From this experiment, the change in FS_DECAY
has more impact on the system than the change in
FS_INTERVAL.

Figure 10: Fairshare Decay on Red Diamond Workload

 Similar to previous experiment, as the FS_DECAY
increases, the system utilization also increases.

5.2.2 Acxiom Workload

Table 7: Fairshare Decay on Acxiom Workload

 The conclusion with the Red Diamond workload can also
be applied to Acxiom workload. The average response time
of the 16_node group increases significantly and the
average response time of other groups decrease. Figure 11
shows the result of this experiment.

.

FS_DEPTH =3windows FS_target[1_node] = 14
FS_target[8_node] = 12

FS_DECAY = 0.7 FS_target[2_node] = 6
FS_target[12_node] = 15

FS_target[4_node] = 15
FS_target[16_node] = 38

FS_INTERVAL = 7 days FS_TARGET [Physics] = 65
FS_ DEPTH = 7 windows FS_TARGET [Chemistry] =

20
FS_TARGET [Others] = 15

FS_DEPTH = 3
windows

FS_target[1_node] = 14
FS_target[8_node] = 12

FS_INTERVAL =
3 days

FS_target[2_node] = 6
FS_target[12_node] = 15

FS_target[4_node] = 15
FS_target[16_node] = 38

7

Figure 11: Fairshare Decay on Acxiom Workload

5.3 Fairshare Target

 The next parameter that is examined is FS_TARGET. In
theory, FS_TARGET may have more impact than other
parameters because it has a direct influence on the priority
of each group.

5.3.1 Red Diamond Workload

 The way to set up this experiment is different compared
to the previous experiments. FS_INTERVAL, FS_DEPTH
and FS_DECAY are set to constant values. The values of
FS_TARGET of each group are changed. In this case, the
FS_TARGET of the Physics group will decrease and
FS_TARGET of Chemistry and “Others” will increase.
However, the sum of all FS_TARGET parameters must
equal 100 since it is equal to the percentage runtime of each
group.The maximum possible usage of the system is 100%,
so the maximum possible FS_TARGET must also be 100.

Table 8: Fairshare Target on Red Diamond Workload

 Figure 12 shows that as the FS_TARGET decreases, the
average response time of the Physics group increases. A
smaller FS_TARGET means lower priority, makes the jobs
of the Physics group wait longer.

Figure 12: Fairshare target on Red Diamond Workload

 Figure 13 shows the system utilization when varying
FS_TARGET. The increase in average response time of the
Physics group makes the system utilization also increase.

70

75

80

85

90

95

100

Run 1 Run 2 Run 3

Utilization (%)

FS_TARGET

Utilization

Figure 13: Utilization Red Diamond Workload

5.3.2 Acxiom Workload

 This experiment is set up exactly like the previous
experiment. The setup is shown in Table 9. Figure 14
shows the impact of changing the FS_TARGET on each
group in the Acxiom workload. The results are even more
interesting than what was shown in Figure 10. On the first
run, the average response time of the 16_node group is even
smaller than the average response time of the 12_node
group. Having a much higher FS_TARGET is the reason
why the average response time of the 16_node group is still
smaller than the average response time of the 12_node
group even though the average runtime and number jobs of
the 16_node group is higher than the 12_node group. This
result shows how much impact FS_TARGET has on the
performance of each group. As the FS_TARGET of the
16_node group decreases, its average response time
increases rapidly. The 12_node group, its average response
time decreases, as the FS_TARGET increases.

FS_DEPTH = 7
windows

Run 1 Phys = 85 Chem = 10
Others = 5

FS_INTERVAL = 7
days

Run 2 Phys = 75 Chem = 15
Others = 10

FS_DECAY = 0.7 Run 3 Phys = 65 Chem = 20
Others = 15

8

FS_DEPTH = 3 windows FS_INTERVAL = 3 days

FS_DECAY = 0.7

Group Run 1 Run 2 Run 3
1_node FS_TARGET

=10
FS_TARGET
=12

FS_TARGE
T=14

2_node FS_TARGET
=2

FS_TARGET
=4

FS_TARGE
T=6

4_node FS_TARGET
=11

FS_TARGET
=13

FS_TARGE
T=15

8_node FS_TARGET
=7

FS_TARGET
=9

FS_TARGE
T=11

12_node FS_TARGET
=11

FS_TARGET
=13

FS_TARGE
T=15

16_node FS_TARGET
=58

FS_TARGET
=48

FS_TARGE
T=38

Table 9: Fairshare Target on Acxiom Workload

Figure 14: Fairshare Target on Acxiom Workload

 Similar to the Red Diamond workload, the increase in
average response time of the 16_node group increases
system utilization. It now can be concluded that, in both
workloads, if the average response time of the group with
highest average job size and highest average runtime such
as the Physics group or the 16_node group, increases, then
the system utilization will also increase. Also, the
utilization also increases in this case.

5.4 Fairshare Interval and Fairshare Depth

 Up to this point, only one factor at a time has been
changed during simulation. Although the results from the
previous parts are good, the impact of varying the fairshare
parameters individually is relatively small. Variations in
response time were small, giving the impression that
changing fairshare parameters affects workload execution
very little. This section provides a different look at the
results. Instead of just FS_INTERVAL or FS_DEPTH, it
will be the combination of both parameters. The result
analysis of this experiment is based on Red Diamond
workload.

FS_DECAY = 0.7 FS_TARGET [Physics] =
65

FS_TARGET [Chemistry]
= 20

FS_TARGET [Others] =
15

Table 10: Fairshare Interval and Fairshare Depth on
Red Diamond Workload

 In this experiment both FS_INTERVAL and FS_DEPTH
parameters are varied. FS_DECAY and FS_TARGET
remain fixed. Figure 15 shows the change in response time
of both Physics and Chemistry groups. The x-axis is the
FS_INTERVAL, the y-axis is the FS_DEPTH and the z-
axis is the average response time. Similar to the graph in
section 5.1, the average response time of the Physics group
increases and the average response time of the Chemistry
group decreases. However, compared to figure 6, it is clear
that the gap between two surfaces gets bigger as the
parameters increase. This means the change in the average
response time of both Physics and Chemistry are more
significant than the previous experiments.

Figure 15: Fairshare Interval and Fairshare Depth on
Red Diamond Workload

6. Experimental Summary

 The goal of this research is to conduct a performance
analysis of fairshare scheduling for two different case study
environments. First, a workload model was built and
analyzed. The workload models have been built to capture
all the essential attributes of the actual workloads.
Statistical analysis and graphical techniques have been used
to perform the actual workload analysis. The second part is
to study the impact of fairshare scheduling on the model
workloads. In order to evaluate the impact of each fairshare
parameter on the performance, ten experiments have been
completed. As the value of each parameter is varied, the
results are different. Following are the highlights of all
experiments:

9

• As FS_INTERVAL, FS_DEPTH, and FS_DECAY
increase, the average response time of the group, which
has a high average runtime, high average job size, and
large number of jobs, increases. On the other hand, the
average response time of the group that has a smaller
average runtime, average job size and number of job,
decreases.

• Changes to FS_DECAY have more impact than
changes to FS_INTERVAL or FS_DEPTH. When
FS_DECAY increases, the change in response time is
more significant than when FS_INTERVAL increases.

• Changes to FS_TARGET have the most impact on the
performance. One can easily change the whole
outcome of a system by changing FS_TARGET.

• Increasing the values of two parameters at once will
change the performance more rapidly than just one
parameter

7. Conclusion

 Fairshare scheduling is a dynamic scheduling algorithm
to use in clusters and grid. This research has presented
several experiments that study the effect of each fairshare
parameter. From the results, although it appears that
varying FS_TARGET is the best way to control usage,
other paramters such as FS_INTERVAL, FS_DEPTH, and
FS_DECAY still have a big part in the whole algorithm.

Acknowledgments

This work is supported by research grant from Acxiom and
by the National Science Foundation under MRI Grant
#0421099.

References:

[1] B.W.Lampson, “A Scheduling Philosophy for
Multiprocessing Systems”, Communications of the ACM,
Volume 11, No. 5, May 1968.

[2] E. Bolker and Y. Ding, “On the Performance
Impact of Fair Share Scheduling” need full reference
information here

[3] D.H.J. Epema and J.F.C.M. de Jongh,
“Proportional-Share Scheduling in Single-Server and
Multiple-Server Computing Systems”, Performance
Evaluation Review, Vol. 27, Issue 3, December 1999, pp. 7-
10.

[4] C.A. Waldspurger and W.E. Weihl, “Lottery
Scheduling: Flexible Proportional Share Resource
Management”, In Proceedings of the First USENIX
Symposium on Operating System Design and
Implementation. Monterey, CA, USA, November 1994.

[5] C.A. Waldspurger and W.E. Weihl, “Stride
Scheduling: Deterministic Proportional-Share Resource
Management”, Technical Report. MIT, June 1995.

[6] Moab cluster suite.
http://www.clusterresources.com/pages/products/moab-
cluster-suite.php, March 2008. website.

[7] P.Goyal. H. M. Vin, and H.Cheng,”Star-Time Fair
Queuing: A Scheduling Algorithm for Integrated Services
Packet Switching Networks”, IEEE/ACM Transaction on
Networking, Vol. 5, No. 5, October 1997. Pp. 690-704.

[8] B. Lu. “An Integrated Capacity Planning
Environment for Enterprise Grids”, P.h.D Dissertation,
University of Arkansas, 2007. Reference the CMG paper
also

[9] Feitelson, D. (2008). Workload Characterization
and Modeling. www.cs.huji.ac.il/labs/parallel/workload/

[10] Uri Lublin and Dror G. Feitelson. “The workload
on parallel supercomputers: modeling the characteristics of
rigid jobs”, In Job Parallel Distributed Computing, 2003.
Need full reference

[11] Baochuan Lu, Michael Tinker, Amy Apon, Doug
Hoffman, and Lawrence Dowdy,” Adaptive automatic grid
reconfiguration using workload phase identification”. In E-
SCIENCE '05: Proceedings of the First International
Conference on e-Science and Grid Computing, Washington,
DC, USA, 2005.

[12] Mark S. Squillante, David D. Yao, and Li Zhang,
“The impact of job arrival patterns on parallel scheduling”,
SIGMETRICS Perform. Eval. Rev., 26(4):52–59, 1999.

[13] B. Lu. “An Integrated Capacity Planning for
Enterprise Grid”, Ph.D Dissertation, University of
Arkansas, 2007.

1

	1. Introduction
	2. Background
	2.1 Fairshare parameters

	3. Workload Modeling
	3.1 Workload Trace
	3.1.1 The Acxiom Workload Trace
	3.1.2 University of Arkansas Workload Trace

	3.2. Workload Characterization
	3.2.1 Job Size

	3.3 Workload Modeling

	4. Experimental Setup
	5. Result and Analysis
	5.1 Fairshare Interval
	5.1.1 Red Diamond Workload
	5.1.2 Acxiom Workload

	5.2 Fairshare Decay
	5.2.1 Red Diamond Workload
	5.2.2 Acxiom Workload

	5.3 Fairshare Target
	5.3.1 Red Diamond Workload
	5.3.2 Acxiom Workload

	5.4 Fairshare Interval and Fairshare Depth

	6. Experimental Summary
	7. Conclusion
	Acknowledgments
	References:

