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Abstract

A malleable parallel task is one whose execution time is a function of the number of
processors allotted to it. A nonmalleable parallel task is one that requires a specific
number of processors. Given n independent parallel tasks and m identical processors,
we consider problems of constructing a nonpreemptive schedule of these tasks to mini-
mize one of two objectives: makespan or weighted average completion time.

We present a general two-step method for scheduling malleable tasks that applies
to both objectives: first, choose an allotment of processors to tasks; second, using the
chosen allotment, schedule the tasks as though nonmalleable. In the case of minimizing
makespan, we provide an algorithm for selecting an allotment that, when coupled with
existing algorithms for scheduling nonmalleable tasks, yields algorithms for scheduling
malleable tasks that have the same approximation factor. As a result, we obtain a
9-approximate algorithm for scheduling malleable tasks to minimize makespan with
running time O(mn). Also, in the case when the processors are arranged in a line,
and the processors allotted to a task must be contiguous, we obtain a 2-approximate
algorithm with running time O(mn +n log®n/loglogn).

For the weighted average completion time objective, we prove a lower bound on

this objective for nonmalleable task sets, and use it to prove approximation factors
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for three new algorithms for scheduling nonmalleable tasks: an 8-approximate algo-
rithm for unweighted tasks, a 10.43-approximate algorithm for weighted tasks, and a
max{lv}ﬁ, 5(—1—1_-_7,—) + 1}-approximate algorithm for weighted tasks that require no mure
than [Bm] processors each. We also provide three allotment selection algorithms for
this objective that exhibit a tradeoff between running time and allotment quality.
Putting these results together yields several algorithms for scheduling malleable
tasks to minimize average completion time, including a 2-approximate algorithm for
unweighted tasks with running time O(n® 4+ mn) that requires a weak condition on the

task execution times, and a 4-approximate algorithm for weighted tasks with running

time O(n? + mn) that requires the same condition.
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Chapter 1

Introduction

Parallel processing systems of various types are now widely available and are attract-
ing large numbers of users, thus creating a need for some method of distributing the
processing power of a parallel system among competing jobs. It is plain that executing
a program in parallel introduces overhead that is not present in its sequential execu-
tion. Moreover, communication and synchronization overhead tend to increase with the
number of processors that are allocated to a program. Thus, allocating all the system
resources to one job at a time is not likely to be the most efficient way to use a parallel
system. On the other hand, users want their jobs to be allocated as much processing
power as possible so that they will be completed as quickly as possible.

We consider the problem of allocating system resources to jobs using a model in
which there are a collection of independent jobs or tasks to be scheduled on a set of
identical processors, and each task’s execution time is a known function of the number
of processors that are allocated to it. We call these tasks malleable. Although we
frame the discussion of resource allocation in terms of allocating processors to parallel

tasks, the model that we are using applies whenever there is a single resource that can



be allocated to independent tasks in arbitrary amounts. Another example of such a
resource is memory [59]. Suppose we have a parallel system with virtual memory and
a common primary memory in which each task is executed on a single pror sor. Then
we can treat the execution time of a task as a function of the number of pages of main
memory it is allocated.

Once it has been decided how much of the resource to allocate to each task, we
can view the tasks as if they were nonmalleable, i.e., as if there were no choice, but
rather that each task requires some fixed amount of the resource. Then it remains
to construct a schedule that minimizes some objective function, which may be either
makespan (total schedule length), or average completion time over all the tasks.

Nonmalleable task scheduling problems may also arise independently of malleable
task scheduling. That is, in some cases, the tasks to be scheduled may be nonmal-
leable to begin with. This is the case with parallel systems where the user specifies for
each job the number of processors on which it is to be executed. Another example of
nonmalleable tasks is found in scheduling burn-in operations in semiconductor manu-
facturing [58]. In this problem, each task consists of some number of circuit boards
that are to be heated in an oven for some length of time. Here the resource is the

capacity of the oven in terms of the number of boards it can hold.

1.1 The Scheduling Problems

We are given a set T of n independent tasks. Each task ¢ has an execution time
function ; : M; — IR, where M; C [m] is the set of possible allocations of processors to
task 7, and we use [m] to denote the set {1,2,...,m}. If task ¢ is allocated j processors

and scheduled to begin execution at time b;, then it is completed at time b; + ti(7):




preemption is not allowed, neither may the number of processors allocated to a task be
changed during its execution.

We are also given m identical processors, and our goal is to construct a schedule
of the n tasks on the m processors that minimizes some objective. We consider two
objectives: makespan and weighted average completion time. We will refer to these
problems as MM (malleable makespan) and MWACT (malleable weighted average com-
pletion time). In the case of MWACT, a weight w; is associated with each task. We
refer to the unweighted case of MWACT, i.e., the case where w; = 1 for all tasks 1, as
MACT.

If |M;| = 1 for all tasks 7, then the task set is nonmalleable. We refer to the non-
malleable versions of MM, MWACT, and MACT as NMM, NMWACT, and NMACT,
respectively.

Regardless of objective, scheduling malleable tasks is a generalization of scheduling
nonmalleable tasks, which in turn is a generalization of scheduling sequential tasks (i.e.,
tasks that require one processor). When the objective is minimizing makespan, even
scheduling sequential tasks is NP-hard in the strong sense [24], and therefore NMM
and MM are also NP-hard in the strong sense. When the objective is minimizing
average completion time, while unweighted sequential tasks can be scheduled optimally
in O(nlog n) steps [16], scheduling weighted sequential tasks is NP-hard in the strong
sense [24]. Furthermore, NMACT is NP-hard in the strong sense even when the tasks
have unit execution times [10]. Therefore NMWACT, MACT, and MWACT are also
NP-hard in the strong sense.

For malleable scheduling problems, it is often helpful to assume that the task exe-

cution time functions satisfy certain reasonable conditions. One such condition is that



execution time does not increase as more processors are allocated:
forall j, ke M;: 5 <k = t(j) = ti(k). (1)

This is called the nonincreasing ezecution time condition. In practice, the execution
time of a task typically decreases with the number of processors allocated to it up to
some limit, beyond which the execution time increases. This is a result of an inherent
limit on the amount of parallelism in a given task, coupled with communication and
synchronization overhead that increases as the number of processors increases. Such
behavior does not present a serious problem for algorithms that require the nonincreas-
ing execution time condition, as any algorithm can easily be modified to handle tasks
that exhibit this behavior.

Another condition is that work — the product of processors and execution time —

does not decrease as more processors are allocated:
forall j,k € My: <k = j-ti5) < k-ti(k). (2)

This is called the nondecreasing work condition. One way of viewing this condition is
that the tasks do not exhibit superlinear speedup. Another is that task efficiency does
not increase with the number of processors. While this condition is quite reasonable,
since overhead associated with executing a task in parallel tends to increase with the
number of processors allocated, there are some circumstances under which the condition
will not hold. For example, it may be that a task divides naturally into four subtasks of
equal size. In this case, we may see work decreasing as we increase the allocation from
three to four processors. Another situation in which the condition may be violated
arises from the impact of memory in distributed parallel processing systems [44]. In

such systems, the amount of local memory allocated to a task is limited by the number




of processors allocated to it, and allocating insufficient local memory may result in
excessive paging overhead.

Malleable tasks under these two conditions, along with the condition that M; = [m]
for all tasks 7, are no longer a generalization of nonmalleable tasks. However, they
are still a generalization of sequential tasks, and therefore the NP-hardness results
for MM and MWACT apply even under these conditions. As for MACT, Shachnai
and Glasgow [50] have shown that a restricted version of MACT that satisfies these
conditions is NP-hard in the strong sense.

Therefore, since the problems that we are studying are all NP-hard, we will con-
sider approximation algorithms, and evaluate these algorithms in terms of approzima-
tion factor and running time. We say that an algorithm for a minimization problem
has approximation factor p, or is p-approximate, if for any given instance it produces
a solution with objective function value not more then p times that of the optimal

solution.

1.2 New Results

Our approach to scheduling malleable tasks is to divide the problem into two parts:
first choose an allotment of processors to tasks, and then schedule the tasks as though
nonmalleable. To see how this method works, let p = (p1,p2,--..,pn) denote an allot-
ment of processors to tasks, where p; is the number of processors allocated to task .
Observe that a set of malleable tasks T together with an allotment p yields a set of
nonmalleable tasks T(p), in which task i requires p; processors and has execution time
ti(pi)-

The goal in the first step is to choose an allotment p such that the value of a given



lower bound on the objective function is small for T'(5). Let Ar(p) be a lower bound
on the objective function for the nonmalleable task set T(p). Then Ar = miny{Ar(p)}
is a lower bound on the objective function for the malleable task set T. So the first
step in our approach to scheduling malleable tasks is to choose an allotment p such
that Ar(p) = Ar.

The second step is to apply an algorithm for scheduling nonmalleable tasks to
the task set T'(p). If we have an algorithm that is p-approximate — that is, for any
nonmalleable task set T(p) it produces a schedule with objective function value not
more than pAg(p) — then this algorithm coupled with an algorithm for the first step
yields a p-approximate algorithm for scheduling malleable tasks. For any malleable
task set 7', it will choose an allotment p and then construct a schedule for T'(p) with
objective function value not exceeding pAr(p) = pAr.

This two-step method can be applied to both the average completion time and
the makespan objectives. In the case of average completion time, we present three
algorithms for scheduling nonmalleable tasks, and prove approximation factors for all
three using a new lower bound. This lower bound is a generalization of the bound
for sequential tasks given by Eastman, Even, and Isaacs [19]. We also present three
algorithms for choosing an allotment to minimize the lower bound. In particular,
we present an O(n® + mn) algorithm that selects an optimal allotment — that is,
an allotment p such that Ar(p) = Ar — for a set T of unweighted tasks. We also
obtain faster algorithms by settling for approximations. We present a 2-approximate
allotment selection algorithm with running time O(n? 4+ mn) that applies to weighted
tasks, and a 4-approximate algorithm with running time O(min{n + mlog m,n?}) that

requires w; = 1 and M; = [m] for all tasks 1, along with the nondecreasing work and




nonincreasing execution time conditions.

As for scheduling nonmalleable tasks, we present an 8-approximate NMACT algo-
rithm, a 10.43-approximate NMWACT algorithm, and an NMWACT algorithm with
approximation factor max{ T_—l_—[;, '2T1‘1—7§5 + 1} when no task requires more than [Bm]
processors. All three algorithms have running time O(nlogn).

In order make use of the last of the three NMWACT algorithms in an MWACT
algorithm, it is useful to insert an additional step into the MWACT algorithm as follows.
After choosing an allotment p, adjust it to an allotment g by taking ¢; = min{p;, [am]}
for some a € (0, 1], thus reducing to [am] the allocation of any task that exceeds [am].
This adjustment will reduce the “quality” of p somewhat, depending on «, but to insure
that this reduction in quality will not be too great, we require that the tasks satisfy

the a-weak nondecreasing work condition:
for all k € M;: [am] <k = [am]-ti[am]) < k- (k). (3)

For example, for unweighted task sets 7' that satisfy the —;——weak nondecreasing work
condition, we have a 2-approximate algorithm: choose an optimal allotment p for T,
adjust it by taking ¢; = min{pi, [m/2]}, and then schedule the task set T(q) using
the max{ —1—15, 2—(-1-1:[3—) + 1}-approximate NMWACT algorithm. Note that the a-weak
nondecreasing work condition is substantially less restrictive than the nondecreasing
work condition, and in particular %-weak nondecreasing work is quite realistic: it seems
unlikely that any gain in efficiency could be obtained by increasing a task’s processor
allocation beyond m/2.

The MACT and MWACT algorithms that result from coupling our allotment selec-
tion algorithms with our NMACT and NMWACT algorithms, inserting an allotment

adjustment step in some cases, are listed in Table 1. To our knowledge, these are the



approximation running time nondecr. | requires | reference
factor work? w; =17

max{1=, = O(n® + mn) a-weak yes Cor. 3.2.2
2 z-weak

2 -max{ttz, =} O(n? + mn) a-weak no Cor. 3.3.2
4 Z-weak

7.124 O(min{nlogn + mlogm,n’}) | yes yes Cor. 3.4.2

8 O(n® + mn) no yes Cor. 4.3.1

16 O(n? + mn) no yes Cor. 4.3.1

20.86 O(n? + mn) no no | Cor.4.2.1

*also requires nonincreasing execution time and M; = [m]

Table 1: MACT and MWACT algorithms

first polynomial-time algorithms for MACT and MWACT with constant approximation
factors.

For the makespan objective, we benefit from the fact that many NMM algorithms
already exist, and that there is a single lower bound that is used to prove the approx-
imation factor for most of these algorithms. Much of the work in this area is devoted
to the problem of scheduling on a line of processors: the m processors are arranged in
a line, and the processors allocated to each task must be contiguous. By providing an
allotment selection algorithm, we extend existing NMM algorithms to MM algorithms,
and NMM algorithms for scheduling on a line to MM algorithms for the same.

We distinguish between monotonic MM (MMM), in which the tasks are known to
satisfy both the nondecreasing work and nonincreasing execution time conditions, and
general MM (GMM), in which there are no assumptions on the task execution time
functions. We present an allotment selection algorithm for MMM with running time
O(nlog® m). This algorithm can be extended to GMM at a cost of increasing the run-

ning time to O(mn). Combining these algorithms with existing NMM algorithms yields




running time approx. | line? GMM NMM
factor or MMM? | reference

O(mn) 2 no GMM [22]
O(nlog®m) 2 no MMM

O(mn + nlog® n/loglogn) 2 yes GMM | [53]
O(nlog®m + nlog” n/loglogn) 2 yes MMM

O(mn + nlogn) 2.5 yes GMM | [51]
O(nlog®m + nlogn) 2.5 yes MMM

Table 2: MM algorithms

the results shown in Table 2. To our knowledge, 2 is the best known approximation
factor of a polynomial-time algorithm for GMM, and these are the fastest known run-
ning times in which that factor can be achieved. In fact, O(mn) is within a constant
factor of the best possible running time of any approximation algorithm for GMM with
a constant approximation factor. This is because it is necessary to inspect all m values
of all n execution time functions in order to guarantee a constant approximation factor.

We also present methods for both GMM and MMM for computing an optimal

allotment efficiently in parallel.

1.3 Related Work

1.3.1 Minimizing Makespan

The predecessor of parallel task scheduling problems is the resource-constrained sched-
uling problem [6], as posed by Garey and Graham [22]. In the resource-constrained
scheduling problem, there are one or more resources, and each task requires a certain
amount of each resource for the duration of its execution time. NMM can be formulated

as a resource-constrained scheduling problem, with available processors as the single
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resource. Garey and Graham [22] proposed a simple list scheduling approach to this
problem. In particular, let the tasks be arranged in some arbitrary order. Whenever
processors are free, schedule the first task in the list whose processor requirement does
not exceed the number of available processors. Garey and Graham show that this
algorithm has an approximation factor of 2 for NMM.

Another closely related problem is the oriented orthogonal rectangle packing prob-
lem, first posed by Baker, Coffman, and Rivest (3], and also studied by many oth-
ers [14, 51, 2, 4, 53]. This problem is in fact identical to NMM on a line of processors:
one of the dimensions in the rectangle-packing problem corresponds to time in NMM,
and the other corresponds to processors. Sleator [51] gives a 2.5-approximate rectangle-
packing algorithm with running time O(nlogn). This was the best known approxima-
tion factor for this problem until recently, when Steinberg [53] gave a 2-approximate
algorithm with only a slightly greater running time of O(nlog®n/loglogn).

The extension of the rectangle-packing problem to packing in three dimensions
amounts to NMM on a two-dimensional mesh of processors. Li and Cheng [36] give a
46/ 7-approximate algorithm for this problem with running time O(nlogn).

Krishnamurti and Ma [30] first posed MM (the MMM variant), but in a restricted
form. In the problem they consider, every task is required to begin execution at time 0.
(This requires m > n.) This restriction reduces the problem to that of deciding how
many processors to allocate to each task, subject to the constraint that the total number
of processors allocated to the tasks does not exceed the number of available processors.

Belkhale and Banerjee [5] consider a restriction of MMM in which M; = [m] for all
tasks 7. For this special case, they give a 2-approximate algorithm with running time

O(nlog m + mlogm) that applies to lines.
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Krishnamurti and Narahari [31] consider a less restricted version of MMM in which
M; D {1,2,4,...,27} for all tasks :. They obtain a 2-approximate algorithm with
running time O(n +m log m), but it requires the use of preemption. In a later improve-
ment [42], they give a nonpreemptive algorithm for the same problem with the same
approximation factor and running time O(nlogn + mlog m). Both algorithms apply
to lines.

The precursor to our two-step method was introduced by Turek, Wolf, and Yu [57],
who showed that an algorithm for NMM with approximation factor p and running time
Q(m, n) can be extended to an algorithm for GMM with the same approximation factor
and running time O(mn - Q(m,n)). Their method is to generate a set of allotments,
one of which is the allotment p of an optimal schedule for T' (although it is not known
which allotment). Then an algorithm for NMM is used in conjunction with each of
the generated allotments, and the best of the resulting schedules is selected. Now the
approximation factor of this GMM algorithm is the same as that of the NMM algorithm,
because an optimal schedule for T'(p) is also an optimal schedule for T', and the NMM
algorithm is guaranteed to construct a p-approximate schedule for T(p). The running
time follows from the fact that the set of allotments generated in the first step contains
no more than mn elements. Applying the NMM results of Garey and Graham [22], this
technique yields a 2-approximate algorithm for GMM with running time O(n*mlogm).
For NMM on a line, the rectangle-packing results of Steinberg [53] and Sleator [51]
yield a 2-approximate algorithm with running time O(mn?log® n/loglogn), and a 2.5-
approximate algorithm with running time O(mn?logn), respectively. Our observation
that it is sufficient to generate a single allotment, rather than a set of up to mn

allotments, results in a substantial reduction in running time.
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Rather than seeking approximation algorithms, another way to approach NP-hard
problems is to try to identify the boundaries between cases that can be solved in
polynomial time and cases that are NP-hard. This is the approach to MM that is taken
by Du and Leung [18]. The same approach can also be applied to NMM |7, 10, 23].

Note that MM can be viewed as resource-constrained scheduling with one discrete
malleable resource. For the variation in which the resource is continuous rather than
discrete, see [8, 6].

In another variation, Feldmann, Kao, Sgall, and Teng [20] consider on-line MM with

precedence constraints and linear speedup.

1.3.2 Minimizing Weighted Average Completion Time

Scheduling to minimize average completion time is well-studied in the case of tasks that
each require a single processor, and many variations have been considered. (See [34] for
a survey.) However, approximation algorithms for the natural extension from sequential
tasks to parallel tasks are scarce. Results for resource-constrained scheduling with this
objective are directed toward identifying special cases that can be solved in polynomial
time [6, 9], rather than providing approximation algorithms for the general case with
a single resource. It was only recently that Turek, Schwiegelshohn, Wolf, and Yu [56]
demonstrated an NMACT algorithm with running time O(nlogn) and approximation
factor 32, the first proof of a constant approximation factor for a polynomial-time
NMACT algorithm. Our 8-approximate NMACT algorithm and 10.43-approximate
NMWACT algorithm improve this result.

While our primary focus is on a scheduling environment in which all tasks are ready

at time 0, and complete information about task execution times is available, our fastest
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allotment selection algorithm can also be adapted to an environment in which tasks
arrive over time and little or no information about task execution times is available.
Such an environment may reflect more accurately the conditions that are encountered
in practice. Thus it is not surprising that many processor allocation policies for this
environment have been studied, typically using simulations or analytical modeling to
evaluate their relative performance. (For example, see [12, 41, 40, 48, 25, 35, 60, 54].)
We introduce a new processor allocation policy based on our fastest allotment selection
algorithm, and present simulation results suggesting that its performance is comparable

to that of the best known policies.

1.4 Organization of This Thesis

Chapter 2 contains all the elements of an MWACT algorithm, except for allotment
selection. We present a lower bound on weighted average completion time, and use it
to prove an approximation factor for a simple NMWACT algorithm. We then show
how inserting an allotment adjustment step into an MWACT algorithm affects its
approximation factor. Chapter 3 describes our allotment selection algorithms, and
also includes simulation results for an adaptation of one of the algorithms. Chapter 4
contains our 10.43-approximate NMWACT algorithm and our 8-approximate NMACT
algorithm. In Chapter 5, we present both sequential and parallel allotment selection

algorithms for MM. Chapter 6 contains conclusions and directions for future work.
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Chapter 2

MWACT Algorithm Foundations

Note: The results reported in this chapter and in Sections 3.1 and 3.2 of the subsequent
chapter were obtained jointly with Tiwari, and similar results were obtained indepen-

dently by Turek, Wolf, Fleischer, Glasgow, Schwiegelshohn, and Yu, and appear in [55].

2.1 NMWACT Lower Bounds

A lower bound on weighted average completion time for nonmalleable task sets provides
the link between the two steps of our approach to MWACT. Not only does it serve to
show approximation factors for NMWACT algorithms, it also provides an objective
function for the allotment selection problem.

We will make use of lower bounds on total weighted completion time. Note that
minimizing total weighted completion time is equivalent to minimizing weighted average
completion time. For a given schedule & for the nonmalleable task set T(p), let b¥
denote the starting time of task i, and let RY = Y1) wi[b{ + ti(pi)] denote the total

weighted completion time of X'. The objectiveis to construct a schedule that minimizes
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R¥. Let RA(T(p)) be the value of R¥ that results from applying algorithm A to the
nonmalleable task set T(p). Let R*(T(p)) denote the optimal value of R¥ over all
possible schedules X for the task set T'(p).

Let

n

Hy(p) = Y witi(p:) (4)

i=1
be the weighted sum of the task execution times. This is a lower bound on total
weighted completion time for T'(p).

The next lower bound is based on an idealized schedule of “squashed” tasks. Each
task has a squashed counterpart with the same work requirement and the same weight,
but that requires all m processors. (So its execution time is p; - ti(p;)/m.) An optimal
schedule of the squashed tasks is obtained using Smith’s rule [52]: schedule the tasks
in order of nondecreasing ratio of work to weight. This gives a lower bound on total
weighted completion time for the original task set.

In order to give an expression for this lower bound, we introduce the following
notation. Let @ = (w;,wa,...,w,) be the vector of task weights. Let (w)? =
L kio(k)<o () Wk = ZZ_(,_’% w,-1(5) be the sum of the weights of the tasks that precede
task 7 under the order o, plus the weight w; of task ¢ itself. Let n; = p; - ti(pi)/w; be
the ratio of work to weight of task i. Let o be a permutation that orders the tasks by
nonincreasing ratio of work to weight. That is, 75-1(s) = No-1(s41) for all s € [n —1].
(Note that this is the reverse of the order in which the squashed tasks are scheduled.
That is, task o~!(n) comes first in the schedule.)

Observe that the completion time of task ¢ in the schedule of the squashed tasks

is Y ieo(s) pg—l(s)tawl(s)(pa-l(s))/m. Then the total weighted completion time of this
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schedule is

Sowi Y Po-t(ste=i(s)(Po-1(s))- ()

1=1 s=o(i)

1
m
Now if we let £ = 0~!(s) and r = o(1) and change the order of summation, then we get

a(k)

Z_n;Pktk (px) D Woi(r) (6)
m 2

Ar(p) =

1
m r=1
1

= )iPite(pr)- (7)
This is the “squashed area” lower bound of [56], extended to weighted tasks.
Let
_ 1 &
p) = = > wipiti(ps) (8)
mi-1
be the ratio of the weighted sum of the task work requirements to the total number of
processors. Note that Ur(p) < Ar(p) and Ur(p) < Hr(p).

The main result of this section is the following theorem, which gives a lower bound
on total weighted completion time for NMWACT. This in turn yields an approximation
factor for any NMWACT algorithm for which total weighted completion time can be
bounded in terms of Ar(p), Hr(p), and Ur(p). It also leads to a lower bound on total

weighted completion time for MWACT.

Theorem 2.1.1 For any nonmalleable task set T(p), the total weighted completion

time R¥ of any schedule X for T'(p) is at least

R 2 Ar(p) + 5 Hr(p) — 5Un(7). 9)

Proof: Given a schedule X for the nonmalleable task set T'(p), let r¥(¢) denote the
fraction of task ¢ that is not yet completed at time t. That is, let
1 if t < bF
— t—=b¥ .
ri(t) =14 1- 5 ifof <t <bF +ti(pi) (10)
0 if b:r + ti(pi) < t.




17

Now let
r¥(t) =Y wir () (11)
1=1
be the weighted number of tasks remaining at time ¢, including fractional tasks. Then
/°° A)dt = 3w /°° r¥ (1)dt
0 : 0

n b¥+ti(pi) b¥+ti(pi) § — b
= Zwi U) dt — /b{f o) dt}
- t:(pi
= 2w [(bf +ti(pi)) — ——"“(5 )}
= RX - —'HT(ﬁ) (12)

Now we seek a lower bound on r¥(t). Define a squashed task set T'(g) as before.
That is, let § = (m,m,...,m), and for each task i, let t;(g;) = t:i(m) = p; ti(ps)/m.
Then each squashed task has the same work requirement (and weight) as its counterpart
in the original task set. Consider the schedule Y in which the tasks in T'(g) are ordered
by nondecreasing ratio of work to weight. Note that this is the schedule that we used
in the definition of Ar(7). This schedule provides the desired lower bound, according

to the following lemma.
Lemma 2.1.1 For any schedule X, we have r*(t) > rY(t) for all t.

Let us delay the proof of Lemma 2.1.1 until the completion of the proof of Theo-
rem 2.1.1.

Observe that the weighted sum of the task completion times for the schedule Y is
given by
RY = A7 (p), (13)
and that

Hr(q) = Ur(p)- (14)
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Also, by applying (12) to the schedule ), we get
. y_ LYo ois
/ P(t)dt = B — S Hr(9). (15)
0
Therefore, from (12), (15), (13), and (14), and from Lemma 2.1.1, it follows that

RX—-;—HT(;S) = /Ooor"’(t)dt

= RY — :)-HT((D
1 _
= Ar(p)— é‘UT(p)' (16)
We conclude that R* > Ar(p) + %HT(ﬁ) — zUr(p). O

Proof of Lemma 2.1.1: To prove the lemma, we will use linear programming to
derive a lower bound on r¥ (¢) over all possible schedules X. This bound will be none
other than r¥(2).

Fix some t. We wish to minimize r¥(t), which is the weighted number of tasks
remaining, but we are constrained by the fact that only so much work can be done in

time ¢ with m processors. That is, we have the following problem:

minimize r(t)
subject to Y7y (1 — ¥ (¢))p: - ti(p:)
F(e)

(1)

(¢

1

IN

mit

-3

< 1 foralli € [n]

r > 0 forall: e [n].

Rather than minimizing the weighted number of tasks remaining, let us instead maxi-
mize the weighted number of tasks completed. If we let z; =1 — r&(t) be the fraction

of task 7 that is already completed at time ¢, and let a; = p;-t;(p;) be the work required
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by task i, then instead of (17), we can solve the following:

maximize J..; WiT;

mit

IN

subject to Y i, 4T
(18)
z; < 1 forall:ée[n]

z; > 0 forallie[n]

For the sake of simplicity, let us suppose that the tasks are ordered by nondecreasing
ratio of work to weight. That is, a;/w; < aip1/wiyy for all s € [n —1]. If 320, a; < mt,
then the optimal solution of (18) is z} = 2} = --- = z, = L. If instead o1, a;i > mt,
then let k be the smallest integer such that 5%, a; > mt. Then the optimal solution is

1 if1 € {1,2,...,k—1}
;=40 ifie{k+1,k+2,...,n} (19)
i D R
ak

To verify that this is optimal, we can construct the dual problem and check that
its optimal solution has the same objective function value. (See [13] for a discussion of

linear programming and duality.) The dual of (18) is

minimize mtz+ ) Vi

subject to aiz+y; > w; foralli € [n]
(20)
yi > 0 forallién
z > 0.

It has an optimal solution at z* = w/ax and

wi-ai—fi ifie{l,Q,...,k—l}
* | (21)

0 ifie{kk+1,...,n}

<
=,
il
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Then we have

Zwi‘r: = sz+ < Z] 1™ wh
i=1 =1 Ak
k—1
= mtﬂ -+ (w, —_ a,~~w—k>
ag i=1 ag
= mtz" + Z (T (22)

and since the two solutions are feasible, we conclude that they are also optimal.

Now to complete the proof, observe that the solution given in (19) corresponds to
the schedule in which the squashed task set T'(g) is ordered by nondecreasing ratio
of work to weight. That is, r¥(t) = 1 — z}. Since }_wiz] is an upper bound on the
weighted number of tasks completed at time ¢, we conclude that rY(t) = Swir)(t) is

a lower bound on the weighted number of tasks remaining at time ?. O

Theorem 2.1.1 leads to the following family of lower bounds.

Corollary 2.1.1 For any nonmalleable task set T(p) and any 0 € [0,1], the total

weighted completion time R¥ of any schedule X for T(p) is at least

RY > 042() + (1 = 30)Hr(p) = 30Ur(p) (23)
Proof:
R* = OR* +(1-0)R¥
< 0(As(p) + 3Hr(p) ~ 5Ur(p) + (1= 0)Hr(p)
— 0Ar(p) + (1~ 30)Hr(p) — 50U(7). (24)
ad
Let

L4(5) = 0Az(p) + (1 50)H2(p) = 50Ur(p). (25)
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Then by Corollary 2.1.1, for any 6 € [0, 1], we have

L5(5) < R*(T(p)). (26)

So L%(p) is a lower bound on total weighted completion time for T'(p). The following
corollary shows how to convert an upper bound on total weighted completion time

relative to Aa,\g, and Ay into an upper bound relative to L%(p) for an appropriate 6.

Corollary 2.1.2 If a schedule X satisfies RY < MA7(p)+Ag Hr(p)+ A\vUr(p), where

Aa >0, \g > 0, and Ag + Ag + v >0, then
1
where 8 = mm{l,/\A/(%/\A + )\H),/\A/(/\A + Ay + /\U)}

Proof: Let p= ma,xv{AA, %AA -+ )\H,)\A -+ )\H -+ Au} We will show that RX < [)Lrep(ﬁ)

for

Aa : Aa Aa }
f = — =minq1, , . 28
p { A+ Aat+Am+ A (28)
We will consider three cases corresponding to the possible values of p.

First suppose that p = A4. Then 6 = 1. Observe that p = A4 implies that %AA > Ag

and —Ag > Ay. Then we have the following lower bound on total weighted completion

time.
L4G) = Ar(p)+ 5 Hr(p) - 3Ur(p)
= Ar(p) + %HT@) + %AAA; M g () - %UT(ﬁ)
> Ar(p)+ :\):I‘Z“HT(@ + %AA/\; A Ur(p) — %UT@)
= 2(p) + YL b () - 32U2(r)
> Ar(p) + Y2 Hr(p) + $EUn(P (29)
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Now we have

RY < MsAr(p) + e Hr(p) + AuUr(p)
< AaL5(p)
= pL7(p). (30)

Next suppose that p = A4+Ag. Then we have ~tX4 2 dyand = Aa/(3Aa+2m),

resulting in the following lower bound.

I5(5) = 0Ar(p) + (1~ 20)Hr(p) - 30Ur(7)

— )+ e ) - LU
z %‘;\%ﬁ“j\;AT(ﬁ) + %%HT@) + m(fﬂﬁ)- (31)
We conclude that
RY < MAr() + AgHr(p) + AvUr(p)
< (A + M) ED)
= pL3()- (32)

Finally, suppose that p = A4 + Ag + Ay. Then %AA 4+ Ay >0and 6§ = As/(Aa +

Ag + Av). Now we have

L4(F) = 0Ax(p)+ (1~ 30)Hr(p) — 50Us(P)

2
A4 i+ g+, X4
= Ar(p 2 Hr(p) — 2 Ur(p
Aa -+ Ag + Au r(p) + Aa+ g+ v r(p) Aa+Am+ v 7(P)
= A + Hr(p 2 Hr(p
A+ Ag+ v r(p) Aa+ A+ Au T(p)+/\A+)\H+)\U 7(P)
1
1y,
2

_ Ur(
Aa+ A+ Au r(P)
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A _ AH _ I+ _
> A H —2 L = U
T AatAmt+ A r(p) + A+ g+ Au r(p) + Aa+Ag + Au ()
1
1y,
S Ur(p
A+ Ag + v r(p)
A AH _ Au
= Ar(p H + ————Up(p).
YR W Ry )+ o P
(33)
We conclude that
R* < MaAr(p) + g Hr(p) + AvUr(p)
< (Aa+ g+ M) L5 (P)
= pL7(p). (34)
O

An additional consequence of Theorem 2.1.1 is the following lower bound on total
weighted completion time for malleable task sets, which follows directly from Corol-

lary 2.1.1.

Corollary 2.1.3 For any malleable task set T and any 6 € [0,1], the total weighted

completion time RY of any schedule X for T' is at least

R¥ > min{04r(p) + (1 - 50)Hz(p) - 30Ur(7)} (35)

2.2 A List Scheduling Algorithm for NMWACT

We can use the results of the previous section to prove an approximation factor for a
simple NMWACT algorithm.
The algorithm is as follows. Sort the tasks by nondecreasing ratio of work to weight.

Schedule the first task to begin execution at time 0. Then schedule each subsequent
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task 7 to begin execution at the earliest time when at least p; processors are available,
but no sooner than the previous task begins execution. This is the least ratio first
(LRF) algorithm.

The main result of this section is the following theorem, which gives an upper bound

on the total weighted completion time of a schedule produced by the LRF algorithm.

Theorem 2.2.1 Let T(p) be a nonmalleable task set, and let ||p|| = max;{p:} be the

magzimum number of processors required by any task. Then

Rirr(T(p)) < [Ar(p) — Ur(p)] + Hr(p)- (36)

L —
m — ||p]| +1
The running time of LRF is O(nlogn).

Before proceeding with the proof of Theorem 2.2.1, let us recall the following no-
tation. Let m; = p; - ti(p;)/w; be the ratio of work to weight of task 7, and let o be a
permutation that orders the tasks by nonincreasing ratio of work to weight. That is,
Ne=1(s) = No-1(s+1) for all s € [n — 1]. Then task o~'(n) is scheduled first.

For the proof of Theorem 2.2.1, we make use of a lemma that gives an upper bound

on the starting time of each task.

Lemma 2.2.1 Let X denote the schedule produced by LRF for a given task set T(p).

Then the starting time b¥ of task 1 in the schedule X satisfies

bX T =0 1 o=1(s)lo—1(s)\Fo~1(s 37
: HP||+ }:)HP ) (Po-1(5))- (37)

Proof: Consider a task i. Execution of task i is scheduled to begin after tasks
“Yg(i) +1),07(o(i) +2),...,07"(n) begin, but before any other tasks begin. Then
not more than 30 )41 pa‘-1(s)ta-1(s)(pa_1(s)) work is done before task ¢ begins exe-

cution. Observe that there are not more than ||p|| — 1 idle processors at any time
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when there is at least one task that has not been started yet. Then there are at least
— ||p|| + 1 processors busy at all times until b¥. Now the result follows directly. 0O

Proof of Theorem 2.2.1: Note that we can rewrite (37) as

1 n
b:v S T THN Po—1(s to"‘l I\ Po—1(s ”‘piti Di . 38
m— ||p|| + 1 s=§i) (s) ()( ()) (p:) (38)
Then the total weighted completion time of the schedule produced by LRF for the task
set T'(p) is

RLRF(T(ﬁ)) = bX'Ft pt

2wl
= iwbx Zwt D;)

l n

< p, wy Po—1(s to*"‘ s (pa"‘ sy — Piti Pi + H ﬁ
m—“”p|l+1§ s:';(i) © © ()) ( ) T( )
m
= — " Ax(p) - Ur(p)] + Hr(p). 39
0

Corollary 2.2.1 Let T(5) be a nonmalleable task set such that ||p|| < [Bm] for some

B € (0,1). Then

Ur(p) (40)

and
1 1

T=5 31 5)

Rune(T(5)) < m{ ¥ 1} L25), (a1)
where § = min{1,1/(3/2 — B)}.

Proof: Since ||p|| < [fm] < Bm + 1, applying Theorem 2.2.1 yields

Rirr(T(p)) < mn;;_H:T[AT( p) — Ur(p)] + Hr(p)
< ——[Ar(p) - Ur(p)] + Hr(p)
= L Ae(p) + Help) — ——Un(p). (42)

1-4 1-3
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Now applying Corollary 2.1.2 yields

1 1
1-p"2(1-5)

= max{ ! ! +1}~L3~(ﬁ). (43)

Rirr(T(p)) < max{ +1, 1} - L&(p)

1-p"2(1-0)

2.3 An MWACT Algorithm Framework

We now turn our attention to malleable tasks. Observe that Corollary 2.1.3 defines an

allotment selection problem. That is, for a given 8 € [0, 1], let
, . N L _ 1 o 1 _
L = min{L(p)} = min{0A7(p) + (1 = 50)Hr(p) — 30Ur(P)}- (44)

Then the allotment selection problem is to find for a given # an allotment p such that
L%(p) = LY. Let R*(T) denote the optimal value of R* over all possible schedules X
for the malleable task set T. Then for all 8 € [0,1], we have L§ < R*(T).

The results of the previous two sections suggest the following method of scheduling
a set of malleable tasks T'. First, find a solution p to the allotment selection problem.
Then adjust the allotment § by taking ¢ = min{p;, [#m]} for a carefully chosen g€
(0,1]. Finally, schedule the nonmalleable task set T(g) using an NMWACT algorithm.

The following theorem gives an approximation factor for this method.
Theorem 2.3.1 Suppose we are given an NMWACT algorithm A satisfying
RA(T()) < XaAr(q) + Ag Hr(9) + AvUr(q) (45)

for any nonmalleable task set T(g) with ||g|| < [am]. Let T' be a malleable task set that

satisfies the a-weak nondecreasing work condition. Let p be an allotment for T that
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satisfies L5(p) < pLY% and ||p|| < [Bm], where

NS A Aa
= mi ".;-AA+AH’AA+[m(ﬁn—q‘rfﬂ)““””MU :

(46)

and 8 is such that [am] < [Bm]. Let § be an allotment obtained from p by taking
¢; = min{p;, [am]|}. Then

R4(T(q)) < p-max {AA, %/\A + A, Aa b [m ((alml - M;M) + 1] A+ AU}R*(T).
(47)

Note that if [am] = [B#m], then § = 5, so the allotment adjustment step is effectively

omitted.

Applying this theorem to LRF using Corollary 2.2.1 yields the following corollary.

Corollary 2.3.1 Suppose that the task set T satisfies the a-weak nondecreasing work

condition. Let p be an allotment for T that satisfies L%(p) < pL% and ||p]| < [Bm],

) 1 1
gumm{l’%“a’ﬂwa)[m(ﬁ——ﬁ)+1J}7 (48)

and B is such that [am] < [Bm]. Let g be an allotment obtained from p by taking

where

¢; = min{p;, [am]}. Then

Rire(T()) Sp-max{l ia,z(lia) +1,m <[al7ﬂ —~ [ﬁiﬂ) +1} - R*(T). (49)

With these results in hand, it only remains to provide algorithms for finding exact
or approximate solutions to the allotment selection problem. Note that it follows from
Corollary 2.3.1 with 8 = 1 that an algorithm that solves the allotment selection problem
exactly can be coupled with LRF to produce a 2-approximate algorithm for malleable
task sets that satisfy the z-weak nondecreasing work condition.

For the proof of Theorem 2.3.1, we make use of the following lemma.
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Lemma 2.3.1 Let p be any allotment for a malleable task set T, and let B be such
that ||p|| < [Bm]. Define an allotment § by ¢; = min{p;, [am]}, where o is such that
[am] < [Bm]. Let Ay >0, Ag > 0, and Ay be such that Ay + A g + Ay > 0. Then if

the task set T satisfies the a-weak nondecreasing work condition, then
A A7(§) + AwHr(g) + AvUr(q)

1 B 1
am] [Bm

< AAr(p) + AmHr(p) + [m <( 1) Am+ /\U} Ur(p). (50)

Before we proceed with the proof of Lemma 2.3.1, it will be useful to extend the
definition of Ar(7). Recall that the definition of Ar(p) given in (7) incorporates a
permutation ¢ that orders the tasks by nonincreasing ratio of work to weight. Let us

now extend this definition to incorporate an arbitrary permutation m. Let

Ar(pym) = = 3 (@) piti(pi). (51)

m i

Let the ratio of work to weight for task ¢ when it is assigned j processors be given by

mi(7) = jti(3)/wi. (52)
We will say that an allotment p induces a permutation o if

T]a-1(s)(pa~1(s)) > ’r]0~1(5+1)(p0~1(s+1)) for all s € [TL - 1} (53)

Observe that in the definition of Ar(p) in (7), we made use of a permutation induced
by p. So if an allotment p induces a permutation o, then we have Ar(p) = Ar(p, o).
The following lemma gives another characterization of a permutation o that is induced

by an allotment p.

Lemma 2.3.2 A permutation o is induced by an allotment p if and only if Ar(p,o) =

min,{Ar(p, 7)}.
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Proof: For the “if” part, we will show that if a permutation ¢ is not induced by p,
then it satisfies A7(5, ¢) > min.{Ar(p, 7)}. Since ¢ is not induced by p, there is a pair
of consecutive tasks in the order ¢ such that the first has a smaller ratio of work to
weight than the second. That is, there exists r € [n — 1] such that 7g-1()(Ps-1(r) <

n¢-1(r+1)(p¢_1(,+1)). Let k= ¢~*(r) and let [ = ¢~ '(r +1). Then we have

t ¢
prtr(pr) B z(pz)' (54)
Wi wy

Now define a permutation ¥ by interchanging the pair of tasks that is out of order.

That is, let
r+1 ifi=k

i) = r ifi=1 (55)
#(1) otherwise.

Now we have

_ _ | L 1 &
Ar(p,¢) — Ar(p, %) — S (@)¢piti(p:) — — S (w)? piti(p:)
m = ™ i
B T P
= L[ (®)? ] piti(p:) (56)
Ohbserve that
— W ife= k
(@)? — (@) =% we fi=1 (57)
0 otherwise.
Then we have
Ar(p, d) — Ar(p, ) = —wipkte(pe) + wepiti(pr)
_ waw ~ prte(pr) +P1tz(pz)}
Wi wy

> 0. (58)
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We conclude that Ar(p, @) > ming{Ar(p, m)}.
Before proceeding with the “only if” part, consider a permutation ¢ that satisfies
Ar(p, ) = ming{ Ar(p, )} We have shown that this implies that ¢ is induced by p.

Now by definition we have Ar(p) = Ar(D, ¢), and therefore
Ar(p) = min{Ar(p, 7)}- (59)

Now for the “only if” part, let o be a permutation that is induced by p. Then
by definition we have Ar(p) = Ar(p,0), and so it follows from (59) that Ar(p,o) =
ming { A7(p, T)}, as required. O

Now the following characterization of Ar(p) follows directly from Lemma 2.3.2.

Corollary 2.3.2

Ar(p) = min{Ar(5, ™)} (60)

Proof of Lemma 2.3.1: We will first prove the following three inequalities:

Ar(@) — Ur(@) < Az(p) — Ur(p) (61)
He(3) - Ur@) < Hr(p)+ [m (T&}‘T - m%) - 1} Ur(p); (62)
Ur(g) < Ur(p) (63)
Then we will conclude that

Ma(Az(@) = Ur(@) < AalAr(p) — Ur(p)), (64)

o ~ B 1 1 _
\n(He(@) - Ur(@) < Ma (Hﬂw ; [m (T&?ET _ W) - 1} UT<p>> . (65)
(Aa+2g +20)Ur(9) = (A4 + Ag + 20)Uz (D), (66)

and the lemma follows from adding (64), (65), and (66) together.
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Observe that since g; = min{p;, [am]}, the a-weak nondecreasing work condition
guarantees that
giti(q) < pits(ps) for all i € [n]. - (67)
Then (63) follows directly.
Next, we will show (61). Let o be a permutation that is induced by p. Then by
Corollary 2.3.2, we have

A7(q) < Ar(q,0). (68)

This fact together with (67) yields

Ar(@) - Ur(@) < Ar(§,0) —Ur(9)
= L3 (w)ate) - -3 witi(a)
= %é[(w)g’ — w;] giti(:)
< _7% Z [(@)7 — wi] piti(p:)
= ATZ(;I) — Ur(p)- (69)

Finally, we will show (62). For this purpose, it is sufficient to show that for each

task 7, we have
T e O ) e L O

Pick any task ¢. Note that (70) holds if pi < [am], because in that case ¢; = pi,
and by hypothesis, 1/[am] — 1/[fm] = 0.

Suppose instead that p; > [am]. Then ¢; = [am]. Let

1 1
= —piti(pi) — —qtilqi), "
e = —piti(ps) = - atila) (71)
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and observe that (67) guarantees that € > 0. Now we have
1
ti(@) = W%ti(%)

1 m
= Tamp? P Tom]"

Com (L ) pp) — e
- g0+ ) P

1 1 1
o+ (o = o) PP = ™)

IN

Then (70) follows directly. d
Proof of Theorem 2.3.1: First observe that since (45) holds for all nonmalleable task
sets T(q) with ||g]| < [am], we can conclude that A4 > 0, Ag > 0, and Aa+Ag+iv > 0.
Otherwise, we could construct a task set for which there is no schedule that satisfies
the stated upper bound on RA(T())- Therefore, we can apply Lemma 2.3.1, along

with Corollaries 2.1.2 and 2.1.3, to get

RA(T(9) = AaA7(q) + daHr(@) + MwUr(@)

< ApAr(p) + dwHr(p) + {m (T&l_nﬁ fﬂin}) g+ )\Ul Ur(p)
< max{/\A, —12—/\A + A, Aat {m (T‘&%{T - Tﬁl;n——]-> + 1} Ay + AU} : L%(;ﬁ)

1 1 1
< P'maX{AA>“>\A + Ag,Aa+ {'m (W — mmo + 1} Ag + AU} L%

< p-max {/\A,‘Q-/\A + Ay At [m (( 1m] fﬂlrrﬂ) + 1] A+ AU}
RY(T). (73)

ad
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Chapter 3

Allotment Selection Algorithms

We have seen in the previous chapter that an algorithm for the allotment selection
problem (44) can serve as the basis for an MWACT algorithm. In this chapter, we
present algorithms that select for any 8 € [0, 1] an allotment of processors p to a set T
of malleable tasks such that L4(p) < pLf., where p s some constant. For the case of
equal task weights, we present a polynomial-time algorithm in Section 3.2 that solves
the problem exactly (p=1). We also present two faster algorithms in Sections 3.3
and 3.4 with p = 2 and p = A Tor the general case of task weights, the allotment
selection problem is not known to be solvable in polynomial time. (Neither is 1t known
to be NP-complete.) However, the 2-approximate algorithm mentioned above also
applies to this case. Finally, in Section 3.5 we will consider a scheduling environment
in which tasks arrive over time, and their execution time functions are unknown. We
present an allotment selection policy for this environment that is based on the algorithm
of Section 3.4, and we use experiments to evaluate its performance relative to other
policies.

Before describing the algorithms, we will begin by recasting the allotment selection
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problem as a problem of putting the tasks in the right order.

3.1 Choosing a Permutation

Rather than choosing an allotment and letting that determine a permutation of the
tasks according to work-to-weight ratio, we will choose a permutation and let that
determine an allotment. The first step in this direction is to isolate each individual
task’s contribution to the objective function L§(p) of the allotment selection problem.
Recall that the definition of A7(p) incorporates a particular permutation of the tasks,
and therefore so does the definition of L%(p). We now extend the definition of Lf(p) to

an arbitrary permutation m, using the extended definition of Ar(p) given in (51). Let
/= _ 1 _ 1 _
L4 (p, ) = 0Ar(p,m) + (1 = 59)HT(P) - 50Uz (p)- (74)
Then it follows from Corollary 2.3.2 that

L%(p) = min{Lz(p, ™)}- (75)

Since by definition L% = ming{ L5(p)}, we now have
4 = minmin{ L4 (5, ™)} (76)
Now let us consider each task’s contribution to L&(p, 7). Expanding L%(p, ) using

the definitions of Ar(p, =), Hr(P), and Ur(p), we get

b n(p, ) + (1 — 0)Hr(p) = 50Ur(F)

6 - 1 . g X
= LS (w)rpiti(p:) + (1 — 59) > witipi) — — > wipiti(pi)
2 2m =1

m -

Il

L%(p, ™)

=1

_ Sn_: {.921 ((u‘))f — %W) +(1— %O)wll ti(pi)- (77)
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Now if we define

i) = |2 (1= ) + - Loy 1), (1)

m

then from (77) we see that the contribution of task 7 to L%(p, ) is given by Ci((®)F,pi)-

Therefore, we have
L4(p, ) = zc (D)7, p). (79)

Now a permutation 7 determines an allotment of processors to task ¢ in the following

way. Let
Ci(n) = min{Cilk, I} (80)
and let
ki) = min{j € Mi = Cilp, 7)) = Ci(w)} (81)

be a number of processors that achieves the minimum. Then for a given permutation ,
the contribution of task i to L5(p,m) is minimized by assigning pi = ki((D)T) processors
to task :. Now we are ready to prove that the problem of choosing an allotment can

be viewed instead as a problem of choosing a permutation.

Lemma 3.1.1
L, = min {Z a((w)ﬂ} - (s2)
1=1
Proof: Starting from (76) and applying (79), we have

Ly = mgnmgn{L%(ﬁ»W)}
- minmjn{L%(ﬁ,W)}

= mmmm{ZC’ w)z,p,)}. (83)

1=1
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Observe that for a fixed permutation , the functions Ci((@)7, p:) are independent, and
so each function can be minimized separately. Using this fact and then applying (30)

yields
Ly = rrgn{imxll{b “j)}}
- mn{ 0@ a7} (84)

a

From now on, we will view the allotment selection problem in terms of (82), rather

than (44).

3.2 An Exact Algorithm for the Unweighted Case

Let us now restrict our attention to the case where wi = 1 for all i € [n]. Observe that

.1 this case, (0)F = 7(i). Then from Lemma 3.1.1 we have

L% = min {Y/; Ci(ﬂ(i))} : (85)

Now the contribution Ci(m(i)) of task 1 depends only on the position (i) of task 1,
and not on the positions of any of the other tasks in the order . Therefore the
problem given by (85) is a weighted bipartite matching problem. Construct a 2n-node
bipartite graph G = (W, W, E). The n vertices in Vi correspond to tasks, and the
n vertices in V2 correspond to possible positions in an ordering of the tasks. Assign
weight Ci(s) to edge (i,s). Find a minimum-weight perfect matching M in G. Let m
be the permutation that corresponds to the matching M. That is, if the edge (i,s) 18

present in the matching M, then m(z) = s. Then construct an allotment p by taking
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p; = ki(m(1)). We refer to this as the eczact algorithm, since it gives an exact solution

to the allotment selection problem.

Theorem 3.2.1 For any set T of malleable tasks with w; = 1 for all 1, and any
9 € [0,1], the ezact algorithm finds an allotment p that satisfies L5(p) = Lg. Its

running time is O(n® + mn).

Corollary 3.2.1 Suppose we are given an NMACT algorithm A with running time
Q(m,n) such that RA(T(9) < /\AAT(Q)+)\HHT(Q)+)\UUT(Q) for all nonmalleable task
sets T() satisfying ||@|l < [am]. Then there is a MACT algorithm with approzimation
factor max{Aa, -;—AA + A, A+ i—AH + Ay} and running time O(n® + mn) + Q(m,n)

for task sets that satisfy the a-weak nondecreasing work condition.

Proof: Use the exact algorithm to select an allotment, and then apply Theorem 2.3.1
with p =1 and g = 1. a

Using the exact algorithm in conjunction with LRF yields the following result.

i1
1—-a’ a-

Corollary 3.2.2 Thereis a MACT algorithm with approzimation factor max{
and running time O(n® 4+ mn) for task sets that satisfy the a-weak nondecreasing work

condition.

Proof: Use the exact algorithm to select an allotment, and then apply Corollary 2.3.1
with p =1 and g = 1. a
We have not yet specified how the edge weights Ci(s) will be computed, and how a
minimum weight matching will be found. The latter can be done In O(n®) steps using
the Hungarian method, which is due to Kuhn [32, 43].
As for computing the edge weights, one simple method is to compute Ci(s,7) for all

i,s € [n] and all j € M. This requires O(mn?) steps. However, there is a faster way.
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* Ci(,3) Ci(p,4)
Ci(MaQ)
Ci(p, 1)
Ci(/”’?j)
. .

Figure 1: The functions Ci(u, ) associated with a task 2

Observe that for any fixed task and number of processors j, the contribution Ci(p, 7) is
2 linear function of p. Then for a given task ¢ we have m linear functions that partition
the range (0, Y1, wi] into m or fewer subintervals. Each subinterval is the range over
which the linear function corresponding to a particular j is the minimum of the m
functions. So for each subinterval, there is some J such that every p in that subinterval
has ki(u) = J. See Figure 3.9. Note that the slope of the line corresponding to J
Processors 1s directly proportional to the work required by task 1 when it is assigned J

processors. The following lemma shows that the subintervals can be computed quickly

for each task 2.

Lemma 3.2.1 For all 1 € [n], there exist vij such that 0 = Vimy1 S Vim < - <
v < v = Yy wi, and for all j € (m], if u € (vijer,vis), then Cilp) = Ci(p,73)-

Furthermore, Vi1, Viz, - - - » Vim+1 €T be computed in O(m) steps for any task ¢.
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The proof of this lemma is rather tedious, and has been banished to the Appendix.
For a given task 7, once the subintervals have been computed, then Ci(s) can be

computed for all s € [n] in a total of O(n-+m) steps. Thus the total time to compute all

the edge weights C;(s) is O(n%+4mn), and the total running time of the exact algorithm

is O(n® 4+ mn). This completes the proof of Theorem 3.2.1.

3.3 An Approximation Algorithm for the Weighted

Case

If we wish to have an algorithm that is faster than the exact algorithm, and we are
willing to settle for an approximation, then a simple greedy approach is a natural
candidate. This approach has the added benefit that it also applies to the general case
of weighted tasks.

Note that in the case of weighted tasks, the contribution C;((w®)F) of task i depends
not only on the position 7 (i) of task i, but also on which tasks precede it in the order 7
_ or more precisely, on the total weight of those tasks. Therefore, the problem of
choosing a permutation of weighted tasks is not simply a weighted bipartite matching
problem.

The greedy algorithm determines an order ¢ by assigning tasks to positions one at
a time, in the following manner. Start by setting s := n and pn = S, w;. In each
iteration, choose from among the tasks that have not yet been assigned to positions
the task with the smallest value of Ci(ps)/w;. Let i, denote this task, and assign it
to position s. That is, let #(is) = s. Then let ps1 1= fts — Wi, be the total weight

of the tasks that remain, and continue with s := s — 1. Repeat this process until
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every task has been assigned to a position. Finally, construct an allotment p by taking
pi = ri((@)7):

Theorem 3.3.1 For any set T of malleable tasks and any 0 € [0, 1], the greedy algo-

rithm finds an allotment p that satisfies L5 (p) < 9LY. Its running time s O(n? +mn).

Corollary 3.3.1 Suppose we are given an NMWACT algorithm A with running time
Q(m,n) such that RA(T(g)) < MaAr(q) + A Hr(q) + AoUr(q) for all nonmalleable
task sets T(q) satisfying ||qll < [am]. Then there is an MWACT algorithm with
approzimation factor 2 max{ A, A4+ Am, Aa+ 1Xg 4+ Av} and running time O(n* +

mn) + Q(m,n) for task sets that satisfy the a-weak nondecreasing work condition.

Proof: Use the greedy algorithm to select an allotment, and then apply Theorem 2.3.1
with p =2 and 8 = 1. a

Using the greedy algorithm in conjunction with LRF yields the following result.

Corollary 3.3.2 There 15 an MWACT algorithm with approzimation factor 2 -
max{, 2} and running time O(n? + mn) for task sets that satisfy the a-weak non-

decreasing work condition.

Proof: Use the greedy algorithm to select an allotment, and then apply Corollary 2.3.1
with p =2 and 8 = 1. a

To prove an approximation factor for the greedy algorithm, we need an upper bound
on L%(p)/L%, where p is the greedy allotment. We can obtain a lower bound on L% by
considering how much the objective function value 37y Ci((0)?) can be reduced by

changing the order of the tasks from the greedy order ¢ to some other order ¢'. For

this purpose, given the contribution C,-((zz;)?) of task 7 under the order ¢, we will prove
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a lower bound on the contribution C’i((i[))?/) of that task under the order ¢'. The next

two lemmas provide this bound.

Lemma 3.3.1 Let p,p' > wi. Then
1 if @ < g, then Ci(p!) 2 £ Ci(w);
2. if ' > p, then Ci(u') 2 Ci(p).

For any z, let (z) = min{z,1}. Then Lemma 3.3.1 can be restated as Ci(y') >

<%> Ci(p)-
Proof:
f 9&,‘ ! f 1 1 ;
) = [P~ g+ 01— 00w 665 1)
O (p! I —1lp '
e [9“’(“ J(u = w) +(1- ~0>wz} ()
i) () — wi) + (1= ;0w L ™
I Ut LD R Gl LLTGYPAPRP0)
9"‘"(1“' (p— 2wi) + (1 - %O)wi ’
y emmu (' — %wl) +(1 - %O)wiC'(u). (36)
2 T L) + (1 §0w

If i/ > u, then the result is immediate. If p' < p, then we have

Ori (! (W -1 _1
, () w;) + (1 Nw;
g e ik LS Gt /LT
() () — Jap) + (1 — 30)wi
(' — Lw;) + (1 — 30)wi
> 2 2 Ci
S TR T
o+ (- 0\w;
= Bu+ (1 O)w; Cilk)
> Eciw. (87)
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Lemma 3.3.2 Let ¢ be the permutation produced by the greedy algorithm, and let ¢’ be

any permutation. Then G,((ﬂ))‘f’l) > / @;«;> C'k((ﬁ))}’z) for all k such that (k) = (1)
2)?

Proof: By Lemma 3.3.1, we have Ci((w)‘f/) - <%l%> Ci((u'))ﬁ). Since p(k) = (1),
and because of the way the greedy algorithm selects a task for each position, we also
pave Ci((®)5)/wi = Ci((@)%)/wx. The result follows directly. 0

Now to obtain a lower bound on L%", let a, denote the contribution and b, denote
the weight of the task in position s i the greedy order $. Then agi) = Gz((ﬂ))f) and
ba(iy = Wi- Let m be a permutation that, when applied to the greedy~ordered tasks,
yields the permutation #'. That Is, m($(2)) = ¢'(1) for all © € [n]. For any vector T,

define (Z)i = i, Tk to be the sum of the first ¢ clements of . Note that

Bl #(4) _
(@)f =D wsr() = > by = (D)o (83)
s=1 s=1
and
N ¢' (%) n{$(i)) m(¢(1) ~
(@) = 3 wen@= 2 W T 2 b = (B30 (89)
s=1 s=1 5=

Then it follows from Lemma 3.3.2 that
c@?) = max w [ (@) Cul(@)?)
((@)?) = max o\
e Aw N/
bs(i) <( )$(£)> }
= max PN (e ) @
k=¢(k>2¢(i>{b¢(k) Qo]
botiy [ (D))
) 200 (2 . 90
gﬁ}t{){ b < (b “ (90)

_ g b, [ (b)S
fa(a,bym) = max {E <~(-B—)~l-> az} ; (91)

F(a,b,m) = zn: fo(@,b, 7). (92)

s=1

I

Now let

and let
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Then we have

1] -

Ci((@)?) = fay(@,b,m). (93)

Therefore, any malleable task set T defines a pair of vectors @ and b that satisfy
mn{P(6, )} < mjn{ 3G = 14 (34
=1

and thus we have the desired lower bound on Lé.

Finally, observe that from (75) and (79) it follows that

n

L8.(5) < L4(p¢) = 3 Cul ()2, 1) = z (95)

=1
Therefore, for a given problem instance, the greedy algorithm produces a schedule with
total weighted completion time that does not exceed the optimal by more than a factor

of
L7(p)
LS

n
=1 %

min.{F(a@,b,m)} (96)

<

where @ and b are vectors corresponding to the problem instance as described above.

We have proved the following result.

Lemma 3.3.3 The approzimation factor p of the greedy algorithm satisfies p < wa,

where wa is the value of the following optimization problem:

ag

WG = MATIMIZELfx  Fagm)
subject to b; >0 foralli€n] (97)
a; >0 for all i € [n]
Now our goal is to solve the maximization problem (97). According to the following

lemma, the optimal value of (97) is achieved when the largest ratio a;/b; is an/bn.
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Lemma 3.3.4
.. a;
wg = MATIMIZEFr  Fabm)
subject to =2 for alli € [n—1]

b >0 foralli€[n]

a; >0 foralli€[n]

Proof: We will show that given any permutation 7 and any pair of vectors a and b
of length n satisfying the constraints of (97), they can be transformed so that they
satisfy the constraints of (98), without reducing the ratio (- a;)/F(@,b,m). Let ||a, bl| =
max;{a;/b:} be the largest ratio a;/b;, and let v = max{i : ai/b; = l|@, bl|} be the largest
index for which that ratio is achieved. The transformation will proceed in steps, with
cach step reducing the quantity n — v, 1.€, moving the largest ratio a; /b; closer to the
end of the vectors.

In each step there are two cases. If

:.'j=1 Cl,i > Z?:l CL.;— 99
S - S @b (99)

then truncate @ and b to length v. In particular, let @ and b be vectors of length v,
where d} = a; and b} = b; for all i € [v]. Also, restrict the permutation 7 on [n] to a

permutation 7’ on [v] by taking
() = {j <vin(d) <7} (100)

for all i € [v]. Note that this construction has the property that n(i) < m(k) = (1) <

'(k). Then for all 2 € [v], we have

®r= >, b=z > b= S =07 (101)

ke (k) < (5) k<vAm(k)<m(i) k! (k) <! (3)
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Observe that for all [ > v we have ai/b; < a,/by, and also (b); > (b),, and therefore

-t T - blx (E, ?, !
e = mecl ()

= fi(a@,b,m) (102)

We conclude that

v ! v R kg .
- Z‘L:—'}la}_, / _>— - l:l_a’_ Z - 1:.‘1—.0"‘_ . (103)
Zi:l fi(a'vbv’fr) Zi.—:l fi(a,b,ﬂ') Zi:l f,;(CL,b,’/T)

Furthermore, ||@, b'|| = av/bs, so the transformation is complete.

Suppose instead that

Z;j::]. a’id < Z?::l a’i
Zy:l fi(d, b? 7T> Z?:l f,-(&,b,ﬂ')

(104)

Let y = max;>y{a:i/bi} be the largest ratio that comes after a,/b,. Note that y < l\@, b]|-
Let @ be a vector of length n with a} = ﬁﬁgﬁﬂai for 1 < v, and a} = a; for 1 > v. Now
@, b|| = v, and max{i : a}/b; = @, b||} > v, so the largest ratio a’/b; is now closer to
the end of the vectors. Since the new solution @, b, 7 is feasible for (97), it only remains
to check that its objective function is no less than that of the original solution.
Observe that for ¢ > v, we have fi(@,b,m) = fi(@,b,m). For ¢« < v, note that for

all [ € [n] we have aj/bi < la@,bl| = a,/by, and if [ > v, then we also have (b)1 > (b)w-

b [ (O
fild,bym) = f“szas’i{?»?<(”>z>a’}

Therefore
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(105)

Now we have

?:l {L :'j.-:l i ?:U+1 ;
Shae S a4 T @
Z?::l fi(a'/v ba 7T)

S Fi@,b,m) + Timugr £i(@0,7)
ﬁf;‘gﬁ Y=y @it Yoyt G
W&%’Eﬂ Zzl:l fi(av Ba Tr) + Z?:u+1 fi(av 67 ﬂ‘)
ey @i
i1 fi(éj), )’

> (106)

where the last inequality follows from (104) and the fact that y < ||@, bl|-
This process can be repeated until we have a solution that satisfies the constraints
of (98). |

We can make use of Lemma 3.3.4 to prove the desired upper bound on wg.
Lemma 3.3.5 wg < 2.

Proof: Our goal is to show that 2F(a,b,m) > Yoy @ given the constraints of (98).

2F(a,b,m) = ZZfi(a,E,ﬂ)

= ZB—-(%)‘;ZZ)" ST b

i=1  kr(k)<m(d)
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a
_ 9% S by
bn(0)n wiy<r)

An
= QW > bebs

r<s

a i .
= —— bi| + b}

G
> -b—*Zbl

n =1

n an
= Z;b"?%;‘

n al

> by

=1

n

== ZGi. (107)

i=1

O

Now it follows directly from Lemmas 3.3.3 and 3.3.5 that the greedy algorithm

is 2-approximate. To show that its running time is O(n? 4+ mn), we make use of
Lemma 3.2.1. We begin by computing v;; for all ¢ and j in O(mn) steps. Then for any
task ¢, the time required to compute Ci(us) over all iterations s of the greedy algorithm
is O(n +m). This yields a total of O(n? + mn) steps to compute the values of Cilps)-
Finally, it takes O(n) steps in each iteration to choose the task with the smallest value
of Ci(ps)/wi, for a total of O(n?) steps. Thus the greedy algorithm has running time

O(n? + mn). This completes the proof of Theorem 3.3.1.

g
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3.4 A Faster Approximation Algorithm for the Un-

weighted Case

If M; = [m] and w; = 1 for all tasks ¢, and the tasks satisfy the nondecreasing work and
nonincreasing execution time conditions, then we can obtain an even faster allotment
selection algorithm using the following observation. Suppose that n > m. Since the
tasks do not exhibit superlinear speedup, intuition suggests that smaller tasks should
be executed first and assigned one processor each. This will yield high efficiency, which
will in turn keep task completion times down. Qo if task 7 is in position s, and s 1s
sufficiently large, then we expect that p; =1 is a good allotment for task ¢. According
to the following lemma, this intuition can be extended to any position s, so that a good
allotment of processors to the task in position s can be determined independently of

that task’s execution time function.

Lemma 3.4.1 Suppose that M; = [m] and w; = 1 for all tasks 1 and that the tasks
satisfy the nondecreasing work and nonincreasing ezecution time conditions. Let p(s) =

[L}_‘_i‘@ﬂ] . Then Ci(s,p(s)) < 2Ci(s) for all tasks 1 € [n] and all positions s € [n].

05-—%0-&—2

Proof: Consider assigning task i to position s and assigning it j processors. Then its

contribution 1s

Cisrd) = {%(s——-;m—%e] 1(5) (108)
- [Li-pru- 0] i) (109
m 27 7 2

Let us consider the two cases J < ki(s) and j 2 ki(s), and in each case determine by

how much Ci(s,7) can exceed Ci(s) = Ci(s, ki(8))-
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Suppose that j < ki(s). Then we have j - ti(4) < kil(s) - ti(ki(s)) due to the

nondecreasing work condition. Therefore

Ci(s) = Cils,ki(s))
- (Lo prag- 3] st
> [ LoD+ - 0] 0
> (05— 0+ )jt() (110)

It follows from (109) and (110) that
s 1)+ 11 39)

Oi(S,j) < = '-771;(98 __€+1) C{(S)
(s —=3)i+(—30m
= (IR Ci(s). (111)

Now suppose that j > #i(s). Then we have t;(5) < ti(ki(s)) due to the nonincreasing

execution time condition. Therefore

Ci(s) = Ci(s,kil(s))

> [ (s-—§)+l——0} £:(5). (112)
It follows from (108) and (112) t

Ci(saj) S

Ci(s). (113)

Let

gi(z) = . 2, (114)
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and let
go(z) = 99((58"_%5 j((1 :.feg)),:' (115)
Then from (111) and (113) we have
Ci(s,4) < max{g1(7), 92(5)} - Ci(s)- (116)
Now p(s) = [2o], where

Since gi(z) is decreasing, a([z]) € qu(z). And since go() is increasing, a([z]) <

g2(z + 1). Therefore,

max{g:(p(s)), g2(p(s))} = max{g1([o]), g2([z0])}

< max{g1(2o), g2(zo + D} (118)

A straightforward calculation reveals that max{gi(zo), g2(zo +1)} £ 2, and therefore

max{g1(p(s)), 92(p(s))} = 2- (119)

Then from (116) and (119), we have

Ci(s,p(s)) < max{g(p(s)), g2(p(s))} - Cils) < 2C4(s)- (120)

|

The algorithm is as follows. Let s:=mn. Let s := max{r : p(r) > p(s)}. Note that
p(s' +1) = p(s' + 9) = --- = p(s). From among those tasks that have not yet been
assigned to positions, choose the s — §' tasks with the smallest values of t;(p(s)) to be
in positions s down to s' + 1, assigning p(s) processors to cach one. Then let s := ¢’
and proceed in the same way until every task has been assigned to a position. Note

that this algorithm determines an order ¢ and an allotment p such that p; = p(¥(2))-
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We say that this algorithm is ‘semi-oblivious’ because it uses the task execution
time functions to determine the order of the tasks, but once the order is determined,
the allotment of processors to tasks is determined independently of the task execution

time functions.

Theorem 3.4.1 For any set T of malleable tasks satisfying the nondecreasing work
and nonincreasing execution time conditions, with M; = [m] and w; =1 for all tasks 1,
and any 0 € [0,1], the semi-oblivious algorithm finds an allotment p that satisfies

L8(p) < 4L%. Its running time is O(min{n +mlogm,n?}).

Corollary 3.4.1 Suppose we are given an NMACT algorithm A with running time
Q(m,n) such that RA(T(q)) < A Ar(g)+ g Hr(q) +AUr(g) for all nonmalleable task
sets T(q) satisfying ||ql| < [a@m]. Then there is a MACT algorithm with approzimation
factor 4 - max{Aa, %)\A + Mg, A4+ (i -1+ ;ﬁq))\g + Ay, A4+ g + Av} and running
time O(min{n + mlog m,n2}) + Q(m,n) for task sets that satisfy the nondecreasing

work and nonincreasing ezecution time conditions, and with M; = [m] for all tasks 1.

Proof: First, use the semi-oblivious algorithm to select an allotment p. In order to
apply Theorem 2.3.1, we wish to select 3 as small as possible subject to [Bm] > |17l

and [#m] > [am]. Observe that

1Bl = {Qi_ig%ﬂ < [%}-] (121)

since (1 — 30)/(2 — 30) < L forall 0 € [0,1]. Now applying Theorem 2.3.1 with
B = max{},a} and p =4 yields the desired approximation factor. 0
Using the semi-oblivious algorithm in conjunction with LRF yields the following

result.
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Corollary 3.4.2 There is a MACT algorithm with approzimation factor 3 + V17 =
7194 and running time O nin{nlogn + mlogm,n?}) for task sets that satisfy the
nondecreasing work and nonincreasing ezecution time conditions, and with M; = [mn]

for all tasks 1.

Proof: Corollary 2.3.1 with p = 4 gives

Rire(T(Q)) <4 max{1 _1_(1, a0 i_ o) +1,m <T—&%ﬂ— - Tﬁ) + 1} - R¥(T). (122)
Let
Sy (123)
— 19

and then ||7|| < [Bm], where p is an allotment produced by the semi-oblivious algo-

rithm. Now choosing a = 3 yields

1 .
Rune(T(@) = 4 max(2— 30,2~ 76,1} *(T)

= (8- 0)R*(T), (124)

provided that we choose 0 such that § = 1/(3 —a) = (2 10)/(2— 19), as required by

Corollary 2.3.1. So choosing § =5 — V17 yields
Rupe(T(5)) < (3 + VIT)R*(T) = 7.124R*(T). (125)

a

The analysis of the semi-oblivious algorithm is similar to that of the greedy algo-
rithm. We need an upper bound on L%(p)/ L%, where p is the semi-oblivious allotment.
We will obtain a lower bound on L% by considering how much the objective function
value 7, Ci(¥(2), p(3(2))) can be reduced by changing the order of the tasks from the

semi-oblivious order 9 to some other order ' and assigning to each task the optimal

number of processors for its position.
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The following lemma gives Jower bounds on the contribution of the task 1D position s

if it 1s moved to position T and assigned the optimal number of processors-

Lemma 3.4.2 Leto and o' be any permutations onnl. Lets= o(1), and letr = o'(1).

Then

1. ifr <8 then Ci(r) 2 %%Ci(s,p(s));

Proof: Immediate from Lemmas 3.3.1 and 3.4.1. 0

Note that although the semni-oblivious algorithm does not distinguish between posi-
tions that have the same value of p(s), for the purpose of the analysis We will say that
among such positions, the tasks are ordered so that the task with the least execution

time 18 assigned to the highest—numbered position.

Lemma 3.4.3 Let ¥ be the permutation produced by the semi-oblivious algorithm, and
let ' be any permutation. Then Ci(¥'(#) Z }2-<%'(%> Ck(x/)(k),p(v,b(k))) for all k such

that (k) = B0

proof: By Lemma 3.4.2, we have Ci' (@) 2 3 (%%> Ci(w(k), P (K)))- Since P(k) 2
P(1), and because of the way the semi-oblivious algorithm assigns tasks to positions,
we have Ci(¥(K), p(¥(K))) Z Cr((k), p(p(k))). The result follows directly. u|

Now to obtain a lower bound on L, let av() = i (@), () Pe the contribution
of task 7 in the semni-oblivious order . Letmbea permutation <uch that m($(i)) = B'(3)

for all1 € [n). Let 1 denote the all-ones vector: Then from (91) we have

fol@, 1,m) = m2x {<7—rf(fl> az% : (126)
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Then it follows from Lemma 3.4.3 that

Lo\ () 4 (AN
ECETT {<L(%D> “‘“")}
}

I {<1<1é£..2 o
2 z¥() l

1 =
= afw(i)(a,l,ﬂ). (127)

Ci(¥'(1) 2

{ N’l*—‘ po|

Now we have the desired lower bound:
mind SF(@ 1, 7)} < {z ciw'(i))} - 15, (128)
For the final step, observe that
L4(p) < Lo(pb) = 2 Ci((0),pi) = gciwu),pwm)) - z o (129)

Now we conclude that
LGT@) 23 iy @
AN L =B e
L5 - min.{ F (@, 1,m} (130)

Thus for the semi-oblivious algorithm we have the following version of Lemma 3.3.3.

Lemma 3.4.4 The approzimation factor p of the semi-oblivious algorithm satisfies
p < ws, where ws 18 the value of the following optimization problem:

.. 2 ai
Wwg = mMaImizéan 'f(}a:i—vlr?

(131)
subject to @i > 0 foralli€ [n]

Observe that the optimization problem (131) s 2 restriction of (97) with b =1, and
with an extra factor of 2 in the ob jective function. Therefore, w: < 2wWa- Now it follows

directly from Lemmas 3.4.4 and 3.3.5 that ws < 4, and thus that the semi-oblivious

algorithm 1s 4-approximate.
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It only remains t0 show that its running time is O(min{n + mlog m,n?}). In each
iteration, we will use a linear time selection algorithm as in [1] to choose the s — &'
tasks with the smallest values of t;(p(s)). Observe that there are O(m/J) positions s
for which p(s) > j. Thus -t takes O(n) steps to choose the tasks that will be assigned

a single processor, and O(m/j) steps to choose the tasks that will be assigned j +1

)

PTOCESSOIS, where j > 1. This gives a total of O(n + 2 = O(n +mlog m) steps.
But also note that at least one task 1s assigned to a position 1n cach iteration, and

therefore the running time is O(n?). This completes the proof of Theorem 3.4.1.

3.5 An Alternate Scheduling Environment

We will now take another view of allotment selection by considering a different sched-
uling environment. Suppose that tasks are arriving over time, that the existence of a
task is unknown until its arrival, and that little or no information about task execution
times is available. However, it 1s assumed that the available parallelism N; of each
task is known, where N; is the number of processors that the scheduler believes task
1 can use productively. (This may be the number of processors requested by the user
upon submitting the task.) The goal remains the same: schedule the tasks in a way
that minimizes (unweighted) mean response time, where a task’s response time is the
difference between its completion time and its arrival time. We will show how to adapt
the semi-oblivious algorithm to a processor allocation policy for this environment, and
use simulations to compare its performance t0 that of policies that have been proposed

in the literature.



56

3.5.1 The Policies

The semi-oblivious algorithm can be adapted to a processor allocation policy for the
environment described above in the following way. Tasks are scheduled in first-come-
first-served order. Let s denote the number of tasks currently waiting to be executed.
Then using 6 = 1, allocate min{p(s), Ni} = min{[m/(2s + 1)], Ni} processors to the
next task in line. If the number of free processors s less than the number of processors
required by the next task, then those processors remain idle until the situation changes.

The resulting policy, which we call SO, belongs to the class of run-to-completion
(RTC) policies — nonpreemptive policies that do not change the allocation of proces-
sors to a task during that task’s execution. Chiang, Mansharamani, and Vernon [12]
have recently compared RTC policies that have been proposed in the literature, and
concluded that the policies they call ASP-maz and ASP-maz+ appear to have the best
performance. Therefore, we will follow the experimental methods of Chiang et al. and
compare the performance of SO with that of ASP-maz and ASP-maz+.

ASP-maz is based on ASP (adaptive static partitioning), a policy introduced by
Setia and Tripathi [47]. ASP works in the following way- Whenever processors are
free and there are tasks ready to be executed, divide the processors as equally as
possible among the tasks, subject to the constraint that no task is assigned more
processors than its available parallelism. ASP-maz is the same as ASP, except that
there 1s an additional parameter maz, and no task can be assigned more than maz
processors. ASP-maz is essentially identical to EPM, which was introduced by Rostl,
Smirni, Dowdy, Serazzi, and Carlson [45]. ASP-maz+ is the same as ASP-maz, except
that instead of using maz as an upper bound on the number of processors allocated to

each task, it uses a function v; of maz and the system load p that is computed using 2
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formula analogous to the processor allocation formula given by Sevcik [49]:

Emaz + (1 - %) N; fp<m (132)
Vi =
%}%mam+(1-—%—:—ﬁ-)~l ifp=m,

where ™ = .25.

3.5.2 The Model

For our simulations, we adopt the system and workload model used by Chiang et al. [12],
which is due to Mansharamani and Vernon [39]. Tasks arrive according to a Poisson
process with rate A. We have m identical processors Onl which to schedule the tasks,
and there is no scheduling overhead.

Fach task is characterized by its demand D; = t;(1), its available parallelism N,
and its execution rate function Ei: [m] — BR. The execution time function of a task
in terms of E; and D; is given by t:(3) = Di/ E;(j)- The experiments we present here
all use N; = m, but letting N; be a random variable yields similar results. For task
demand, we use & two-stage hyperexponential distribution with coefficient of variation
Cp = 5, following Majumdar, Eager, and Bunt [38]. We choose a distribution with
mean D = m, 8O that the system load will be given by p = AD/m = A We use an
execution rate function derived from that of Dowdy [17]. Tt s the same for every task,
and is given by

B() = BG) = %—‘-}_—-1-}]- (133)

We refer to B as the sublinearity parameter. Note that the function E(j) more nearly
reflects linear speedup as B increases.
In our use of this system and workload model we choose to vary only three param-

eters: m, A, and B. We use default values for these parameters of m = 100, X = .7,
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Figure 2: Comparison of policies under varying system load
m = 100

and B="70or B = 300.

3.5.3 Simulation Results

All the mean response times reported here were obtained using discrete event sim-
ulation, with 00% confidence intervals and half-widths usually Jess than 5%. The
confidence intervals were computed using the regenerative method whenever possible.
Otherwise, we used the method of batch means.

Figure 2 plots the mean response tlmes of SO and selected ASP-maz and ASP-
maz-+ policies versus system load with m = 100 and B = 70 and 300. We have chosen
values of maz that yield the best performance for these parameter settings. Observe
that SO performs at least as well as the other policies. For B = 70, its mean response

times are about the same as those of ASP25+, while for B = 300, SO has a slight
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advantage.

An important difference between S0 and the other policies is that SO is not work-
conserving: it may leave processors idle even though tasks are waiting to be executed.
To demonstrate the importance of this difference, We introduce a work-conserving ver-
sion of SO, called W(CSO. WCSO is like SO, except that if a task is ready and fewer
than p(s) processors are free, then it allocates to the task all of the free processors.
Figure 3 plots mean response time versus number of processors for A= .Tand B = 70.
Note that as m varies, We let the “10” In ASP10 denote 10%, and similarly for ASP20.
That is, the upper limit on processor allocation for ASP-maz is (maz/100)m. Also
note that when we fix A = .7, ASP25+ and ASP10 are ;dentical policies.

Notice how the performance of the work-conserving policies suffers as the number
of processors INCIeases: A certain increase in mean response time for all the policies 18

expected, since task demands are increasing with the number of processors, but B is
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Figure 4: Mean execution time and processor allocation relative to SO
=.7, B=10
not. Therefore, when m is doubled, the tasks are twice as large, but assigning twice as
many processors to a task does not double its execution rate. However, observe that
the mean response times of the work-conserving policies are increasing with m at a
greater rate than those of SO.

The reason for this is illustrated by Figure 4, which plots the ratio of the mean task
execution time of each policy with respect to that of SO, as well as the ratio of the mean
processor allocation of each policy with respect to that of SO. For each policy, mean
execution time is increasing relative to S0, even though mean allocation is increasing
or staying the same relative to SO). The reason for this phenomenon, and the cause of
the relatively poor performance of the work-conserving policies, is that they allocate a
small number of processors to a relatively large number of tasks. For example, consider
the difference between allocating 1 and 2 processors to a task. The execution time

of a task is maximized when it is allocated 1 processor, but 2 processors nearly cut
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execution time in half. Thus, changing the allocation of a task from 2 processors to 1
has a much more pronounced effect on mean execution time than on mean allocation.
Work-conserving policies suffer from this behavior because they are obliged to begin
execution of a task even if it can only be allocated a single processor, and they often
do so.

A simple remedy is to incorporate a minimum processor allocation into the ASP-
maz policies. We therefore introduce ASP-maz/min, which is like ASP-maz except
that it does not allocate fewer than min processors to any task. For example, if 10
processors become free and b tasks are ready, then ASP10/3 will allocate 4,3, and 3
processors to the next 3 tasks, while ASP10 will allocate 2 processors to each of the
5 tasks. We write ASP10/3 to denote a minimum allocation of 3 processors for each
task, and ASP10//32 to denote a minimum allocation of m /32 processors.

We can also improve SO by extending it to 2 family of policies SO(ay,az) that
allocate max{|m/(a1s + as)],1} processors to the next task in line when there are s
tasks waiting to be executed.

Figure 5 plots mean response times for these new SO(ay,az) and ASP-maz/min
policies as well as for SO and ASP25+, against varying \, m, and B. In (a) and (b),
mean response time 1s plotted against ). For light loads, S0(2,5) does not do as well as
the other policies, since it tends to allocate fewer processors to cach task. For A = .9,
ASP25+ /3 performs poorly because its maximum processor allocation of 4 coupled with
a minimum of 3 results in allocating 4 processors to every task, while other policies
do better by allocating fewer processors. (This suggests also making the minimum
allocation sensitive to system load.) Otherwise, ASP25+/3 and S0(2,5) tend to give

the best results.
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Observe that the mean response times for SO and S0(2,5) are very close for B = 300,
but for B = 10, the mean response times for S0(2,5) are Jower. The effect of B on
the relative performance of SO and §0(2,5) is seen more clearly in (c), which shows
that SO improves relative to S0(2,5) as B increases. This is because 50(2,5) tends
to allocate fewer processors per task than SO, which gives it an advantage when B is
smaller and the execution rate functions are more sublinear. This also explains why
g0 and SO(2,5) improve relative to ASP10 and ASP10//3 as B increases, SINCe the
former policies tend to allocate more processors per task than the latter policies.

Finally, in (d) we can see that incorporating a minimum processor allocation has
corrected the previously ‘dentified flaw in ASP10. ASP 10//32 and S0(2,5) are the
clear winners for large M. The response times for all policies increase as m increases for
reasons noted above, but the effects of increasing m are less pronounced for SO(2,5) than
for SO, once again due to the fact that the SO(2,5) tends to allocate fewer processors
to each task than does SO.

In conclusion, these experiments suggest that SO(a1,02) policies have performance
comparable to that of ASP-maz policies (with or without min). Furthermore, SO(a1,02)
policies and ASP-maz policies have three important characteristics 10 common. First,
both are sensitive to system load, allocating fewer processors to each task as system load
increases. Various studies show that this is a desirable property [49, 25, 41, 40, 48, 12}.
Second, both place an upper limit on the allocation of processors to a task, which has
also been shown to be desirable [12]. Third, neither requires any information about
task demand or execution rate — information that may not be available. We conclude

that SO(a1,a2) appears to be a promising family of RTC policies.
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Chapter 4

Algorithms for NMACT and

NMWACT

Note: The results reported in this chapter were obtained jointly with Schwiegelshohn,
Wolf, Turek, and Yu, and are reported in [46].

We have seen that the approximation factor of the LRF algorithm for NMWACT
depends on the number of processors required by the tasks. In this chapter, we present
algorithms for NMWACT and NMACT and prove an approximation factor for each
that is independent of the number of processors required by the tasks. This allows
us to couple these algorithms with allotment selection algorithms from Chapter 3 to
obtain MACT and MWACT algorithms that place no restrictions on the task exe-
cution time functions. In Section 4.2, we present a 10.43-approximate algorithm for
NMWACT. Then in Section 4.3, we give a variation of this algorithm for NMACT that
is 8-approximate. In Section 4.4 we present worst-case examples for both algorithms.
Finally, in Section 4.5 we give a practical tip for obtaining improved schedules. As

both of our algorithms produce shelf-based schedules, we will begin by considering the
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Figure 6: A shelf schedule

properties of such schedules.

4.1 Shelf Schedules

Shelf schedules can be characterized by the following properties. The tasks are assigned
to shelves, with all tasks on any given shelf having the same starting time. The sum of
the required processors for all tasks on & given shelf must not exceed the total pumber of
processors. The height of 2 shelf is the largest task execution time of any task assigned
to that shelf. The first shelf 1s started at time zero, and the next shelf is started when
all tasks on the previous shelf are completed. See Figure 4.1.

If we think of the tasks as rectangles, the physical analogy becomes clear. Rectan-
gle © has height ¢!, width pi, and area a; = Piti- Rectangles are packed onto shelves,
they must fit on the shelves, the first shelf sits on the foor, and each new shelf rests

on the highest rectangle of the shelf before it. S0 any shelf-based algorithm will apply

tThroughout this chapter, we abbreviate ti(pi) by writing ti. We also replace T (p), At (P), Hr(P),
and Ur(p) with T, AT, Hr, and Ur, respectively.
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to the problem of scheduling tasks on a line of processors.

If T is a set of nonmalleable tasks, then we can think of a shelf assignment as
a surjective function S : [n] = [ such that Ys@=kPi S ™ for all k € [€]. Let
Wi = Ls(iy=k Wi be the total weight of the tasks on shelf k. so that S We = (©)n-
Let ‘Hy = maxs(i)=k ti be the height of shelf k.

Note that for any shelf assignment S, we can view the pair (T,8) as a set of
shelves, and that the indexing of these shelves determines a schedule. The following

lemma characterizes an optimal order of a set of shelves.

Lemma 4.1.1 For any set of shelves (T,S), an ordering of these shelves is optimal if

and only sz < ﬂﬁﬂ for allk € [£ — 1].

- k+1

Let Z(T,S) be the schedule that results from ordering the shelves (T,S) optimally
as specified by Lemma 4.1.1, and let R(T,S) be its total weighted completion time.
This method of ordering the shelves amounts to Smith’s ratio rule for scheduling tasks
of width 1 on a single processor [52], and has the same proof of optimality.

Proof of Lemma 4.1. 1: Suppose that the shelves are not in order of nondecreasing
Hy/Wi. Then there is a shelf k such that Hi/ Wk > His /Wi It the two shelves are
interchanged, then the completion times of the tasks on shelf k will increase by Hi+1
and the completion times of the tasks on shelf k + 1 will decrease by Hk- Therefore,

interchanging the shelves decreases the total weighted completion time by We1Hk —

WiHe+ = WiWei1 (Hi/ Wk — Hiy1/Witr) > 0- n
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4.2 An Algorithm for Weighted Tasks

Let 4 > 1 be a constant that we will specify later. Partition T into height components
by assigning task ¢ to the height component j that satisfies 7! < t; < 47, Next
assign tasks in each height component j to shelves according to the NFIW (for Next
Fit Increasing Width-to- Weight Ratio) bin packing algorithm: reindex the tasks within
height component j 1n order of nondecreasing width-to-weight ratio and assign them
in sequence to shelves, which we regard as bins of size m. Each task is assigned to
the current shelf, which is initialized to be shelf number one and incremented by one
whenever a task does not fit. Finally, combine all the shelves in the various height
components in the order dictated by Lemma 4.1.1. We will call this algorithm ~-
SMARTxrrw. (Note that SMART stands for Scheduling to Minimize Average Response
Time.)

Let Rnriw (T) be the total weighted completion time of the v-SMARTNrF1w schedule

for the task set T'. The following theorem is the main result in this section.

Theorem 4.2.1 For any nonmalleable task set T, the 1.718-SMART vrrw algorithm

satisfies

Ryprw(T) < 8.751Ag + 6.051 Hr — 5.093Ur < 1043R"(T). (134)

Its running time is O(nlogn).

Corollary 4.2.1 There is an MWACT algorithm with approzimation factor 20.86 and

running time O(n? + mn).

Proof: The result is immediate from Corollary 3.3.1. Note that we are using o = 1,

so there are no conditions on the task set T'. 0
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To prove the approximation factor, we will make use of the lower bound on R*(T)
from Section 2.1, and an upper bound on Ryerw(T). To obtain this upper bound, we
will create a new task set T by adjusting the task heights to facilitate the analysis. We
will then partition the task set 7' into two subsets, and consider schedules for the two
subsets separately, proving upper bounds for each. Finally, we will consider the result
of combining the two schedules to obtain a schedule for T, which will give an upper
bound on Ryrrw(T).

We now create a new task set 7 called the v-height construction whose tasks are in
natural one-to-one correspondence with the tasks in T. The width of each task In T
will be identical to that of its counterpart in T, while the task heights will be at least
as large but less than v times larger. In particular, let #; = o8 tl,

Let Sy denote the shelf assignment that results from applying 4-SMARTNFiw to
the task set T. By construction, for any given shelf & in (T, Sr), all the tasks on that
shelf belong to the same height component. That is, there exists some J such that for
all i satisfying Sr(i) = k, we have v/7! < t; < ~7. Therefore, every task 7 on shelf k
satisfies [log, t:i] = 7. We conclude that all the tasks on any given shelf in (T, St) have
identical heights. For this reason, we say that that the set of shelves (T,ST) satisfies
the uniform height condition.

Observe that Bxrrw(T) = R(T,St). To get a bound on Rnprw (1), we will bound

R(T,8r). First we establish a relationship between these two quantities.

Lemma 4.2.1 Let T be any nonmalleable task set, with the height of task 1 gwen
by t; and its width given by pi, and let S be any shelf assignment for T. Let'V be
o nonmalleable task set whose tasks are in one-to-one correspondence with the tasks

in T, with the height of task i given by v; = and its width gwen by pi. (S0 each
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task in V is at least as tall and has the same width as its counterpart in T.) Then

R(T,S) < R(V,S) + Hy — Hy.

Proof: Observe that the shelf assignment S applies to V as well as T, and that the
sets of shelves (T, S) and (V, S) are identical except for the task heights, with each shelf
in (V,S) being at least as tall as its counterpart in (T,S). Let X denote the schedule
that results from starting each shelf of (T',S) at the time the corresponding shelf starts
in Z(V,S), and let R* denote the total weighted completion time of X' Since we are
starting the shelves at the same time in the schedules X and Z(V,S), the weighted

sum of the task starting times is equivalent for these two schedules. That is,
R(V,S) — Hy = R* — Hr. (135)
Now from Lemma 4.1.1 and (135) we have
R(T,S) < R*® = R(V,S8)+ Hr — Hv. (136)

g

So from Lemma 4.2.1 we conclude that R(T,Sr) < R(T, St)+ Hr — Hy. The next
step is to get an upper bound on R(T,ST).

To obtain this upper bound, we will partition T into two subsets T; and Ty, and
bound the quantities R(Tl,ST) and R(T‘z,ST) separately. To partition T, we will
partition the task set T into T) and Ty, and then the task set T will also partition
into two subsets Tl and Tz corresponding task for task to T, and T,. The partition
s as follows. The first subset T contains the tasks on the first shelf (if any) of each
height component — that is, in each height component, the first shelf created by the
NFIW packing. The second subset T, contains the tasks on all remaining shelves. Then

we also have a partition of the set of shelves (T,Sr) into (T, St) and (Ty,St), and a
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partition of the set of shelves (T, St) into (11, Sr) and (T3, St) corresponding shelf for
shelf to (Ty,Sr) and (T3, S1)-
After we have obtained bounds on R(T,S7) and R(T%,St), we can use the following

lemma to produce a bound on R(T, St).

Lemma 4.2.2 Let (V,S) be a set of shelves satisfying the uniform height condition.
Then for any partition of (V,S) into (Vi,S) and (V;,S), and any § > 0, we have
R(V,S) < (6+1)- R(W,8) + (3 +1) - B(V3,5).

Proof: Let yx denote the completion time of shelf k in its respective schedule, either
Z(V,8) or Z(V2,S). For each shelf & in (Vi,S), let yi = dyx, and for each shelf k
in (Vo,8), let yi = Y. Then construct a schedule of all the shelves in (V,S) by
arranging them in order of nondecreasing y4. Call this schedule &', and let z; denote
the completion time of shelf &k in X. Let R denote the total weighted completion time
of X.

Now consider a shelf k in (V4,S). Let [ be the last shelf in (V;,S) that is completed
before shelf k in X. Since shelf [ comes before shelf k, we have y; = y; < Yk = 0Yk.
Then zx = yk + 1 < (1+8)ye. Therefore, the completion time of each task in V; in the
schedule X is not more than § + 1 times its completion time in the schedule Z (V1,S).

Next consider a shelf k in (Vz,S). Let [ be the last shelf in (V4, S) that is completed
before shelf k in X. Since shelf [ comes before shelf k, we have dyi = y; < Yi = Yk
Then zr = ye+w < (1+ %)yk. Therefore, the completion time of each task in V; in the
schedule X is not more than } + 1 times its completion time in the schedule Z (Va, S).

We conclude that R* < (§+1)- R(Vi,8)+(3+1)-R(V2,S5). Now from Lemma 4.1.1
we have R(V,S) < R¥, and the result follows. o

It still remains to prove upper bounds on R(Tl,ST) and R(Tg, St). The following
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lemma is useful for bounding R(Ty,S1)-

Lemma 4.2.3 Let (V,S) be a set of shelves satisfying the uniform height condition
such that every shelf k has height ' for some ¥ > 1 and some integer I, and no two

shelves have the same height. Then R(V,S) < ;;E’_—l-Hv.

Proof: Let X be a schedule in which ihe shelves (V,S) are arranged in order of
increasing height, and let RY denote the total weighted completion time of X. If a
given shelf has height &, then its completion time in X is at most h -+ —f;h + —y%h 4 <
T%Eh = ;}Th. Therefore, the completion time of task i in the schedule X does not
exceed i;%'fvi’ where v; is the height of task i, and so we have R* < T}IHV' Now by
Lemma 4.1.1, we have R(V,S) < R¥, and the result follows. 0

The set of shelves (T 1, ST) satisfies the conditions of Lemma 4.2.3, and so we con-

clude that R(Tl,ST) < E%THTV The following pair of lemmas can be used to bound

R(T3, St)-
Lemma 4.2.4 The ~-height construction T satisfies Ap < vAT and Hy < ~vHr, .

Proof: First observe that for any task 1, we have t; = 7“"3’*"\ < Aylosr bt =t Now
it follows directly that Hp < ~Hr,.

Now let @; = piti, and we have a; < Yai- Let ¢ be a permutation that is induced
by the task set T', and let ¥ be a permutation that is induced by the task set T. Then
using Corollary 2.3.2, we have

Ap= %ﬁé(@)?&i < %i(ﬂ))?’&i < %i(ﬂ))?’ai = yAT. (137)

=1 i=1

4

Lemma 4.2.5 The partition T, satisfies R(T:,S1) < 2As — 2A4,



We delay the proof of this lemma until the end of this section.

Now applying Lemmas 4.2.1, 4.2.2,4.2.3,4.2.4, and 4.2.5 yields

Ryrw(T) < R(T,Sr) + Hr — Hy

A 1 «
< (64 l)R(Tl,ST) + (5 + 1)R(T2,5’1*) + Hy — Hyp
1 1 .
< 25+ DAz - 2(5 + DAg, + 7%‘{(5 +1)Hp — Hy + Hr

)
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1 1
= 25 +DAr - 2(5 + DA, + [;‘Y—?j@ +1) - 1} Hy — Hy, + Hr

2

1 1
< 2’7(5 + 1)Ar ——2(3 + 1A, + { il (6+1) - 'y} Hr, — Hr, + Hr

~v—1
2

1 1
= 2(; +DAr —2(5 + DAn + [;7;7(5 +1) =7+ 1} (Hr — Hr,)

2

1
< 2y(5+DAr+ [;{T(H 1)~y + 1] Hr
ok 4 s - " (6+1)—y+1|U
5 71 7__1 '7 T2

2

1 .

IN

2
— min {2(% +1), 7”_ (S +1) =7+ 1} Ur.

Then by Corollary 2.1.2, we have

2

1 1
Renw(1) £ mox {200+ D25+ 1)+ S0 D =7+

1

20y - (5 + 1)+ ;1_%(5 +1) -+ 1} . R*(T).

Now choosing

1 : 26 1 2
5 = — (692 + 108v/29)/° + — — 2 ~ 64648835
18( ) 9 (692 + 108/29)/2 9

and

1
= ——= L 72
1= 1.71805

(138)

(139)

(140)

(141)
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yields
Ruerw(T) < 8.7511588 AT + 6.0501691 Ht — 5.0936365UT (142)

and

Ryerw(T) < {7(}5 +1)+ "'71;”1‘(5 +1) =+ 1} R¥(T)

< 10.425T49R*(T). (143)

This completes the proof of Theorem 4.2.1. We conclude this section with a proof

of Lemma 4.2.5.
Proof of Lemma 4.2.5: Arrange the shelves in (Tz,ST) according to the area-to-
weight ratio of the task on each shelf with the least such ratio, so that the shelves are
in nondecreasing order according to that ratio. Call this schedule Y. Let gi denote the
completion time of task 1 € Tz in the schedule Y, and let RY = Ve, Wibi be the total
weighted completion time of V.

Our goal is to relate each task’s completion time g; to its contribution to Ap. For this
purpose, we will carefully reindex the tasks. For each task ¢ in T, let &; = p;t; denote
its area. Now reindex the tasks in 7' to satisfy the following three conditions. First, the
tasks are ordered by nondecreasing ratio of area to weight, i.e., @;/wi < Gigp1 /Wi for all
i€ [n—1]. Second, tasks with equal area-to-weight ratio are ordered by nondecreasing
start time in Y. Third, within each height component, the indexing reflects the order in
which the tasks are packed onto shelves. Note that the third condition does not conflict
with the first two, since within a height component, all tasks in T have the same height,
and so ordering the tasks by nondecreasing width-to-weight ratio also orders them by

nondecreasing area-to-weight ratio. Let

;= Z&J (144)
j=1



T4

Then
1 n
Ap=— N wian (145)
m o
Also note that
1
AT1 < ‘7:1’; Z Wi, (146)
€T

and these quantities are not equal in general because o may include tasks that are
not in Ty. Our goal is to show that ¢; < —%ai forallz € T,. Using Lemma 4.1.1 along

with (145) and (146), we will then conclude that

TZ?‘ST szgz < "szaz-'Z( szaz”’“‘zwmam> <2 ATx)

lETz 1€To €T 1eTy
(147)

To prove that gi < ﬁ-ai, we will begin by proving a similar result for each individual
height component. To this end we introduce the following notation. For any two tasks ¢
and j, we write i ~ j if they are in the same height component, 1.e., [log, t:] = [log,t il
For a given task 1, consider the schedule consisting only of the shelves in (T b, St) that
contain tasks that are in the same height component as i, with the shelves ordered as
they are in Y. Note that this is the order in which the shelves are created when the
tasks are packed onto shelves using NFIW. Call this schedule Y(i). For 1 € Ty, let g

denote the completion time of task ¢ in Y(1). Also let

S a;. (148)

jinjri

Then we have the following result pertaining to individual height components.
Lemma 4.2.6 g; < -—cv’ for all 1 € T.

Let us delay the proof of Lemma 4.9.6 until the completion of the proof of Lemma 4.2.5.
Now we are ready to show that ¢ < %ai for all = € T,. Pick any task jo € 1.

Suppose that there are T height components, other than the component containing the
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task jo itself, that contain a shelf that comes before 7o in the schedule Y. For each such
component [ € [r], let 1; be a task with least area-to-weight ratio on the last shelf of the
component [ that comes before the shelf containing jo. Also let 10 be a task with least
area-to-weight ratio on the shelf containing Jo- Then i < jo. Note that the ordering
of the shelves guarantees that &, /wi < Gio/Wio < &, /wj, for all I € [], and so the

indexing of the tasks guarantees that i < joforalll e [r]. Now applying Lemma 4.2.6,

we get
r

2 2 9 3, 2
Zg” =~ -'n-’; a»l = ;’L'z:: Z “T;L‘ZCLJ"——:;”*O[N. (149)

=0 <11/\.7NH j=1
O

Proof of Lemma 4.2.6: Let jo be any task in Ty, and let T° = {i € T4 ~ jo} be the
height component containing jo. Index the shelves in (T°,S7) according to the order
in which they were created. Then shelf 1 is in (Ty,St) and shelf 2 is the first shelf in
Y(jo). Note that tasks in Ty contribute to of;,, but not to G-

Let shelf ko be the shelf containing the task jo, and let 1o be the first task assigned
to shelf ko. Let 2z denote the total area of the tasks on the ko — 1 preceding shelves.
Observe that the first task assigned to any shelf k > 1 is too wide to fit on shelf k& —
and therefore the total width of any shelf plus the first task on the next shelf is greater

than m. Also, the total width of any two consecutive shelves is greater than m. Since

every task in T° has height h = ti ~llogy tiol, it follows that

k ko—1
I P R B 0 hm. (150)
2 2
Also, the way the tasks are indexed guarantees that
2+ i, < o (151)

Recall that shelf 1 is in (Tl,ST), and therefore not in Y(Jo), so the completion time
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of task jo in Y(Jo) 1s
g = (ko — 1)h. (152)

Then from (152), (150), and (151), we have

2 2
U — e A < — 4 .
gJo (ko 1)h < (Z -+ CLIO) ~ mam (153)

4.3 An Improved Algorithm for Unweighted Tasks

In the case of unweighted tasks, we can achieve an improved approximation factor for
a variant of 7-SMARTNrFIw- Specifically, instead of assigning tasks to shelves using
NFIW, we use FFIA (First Fut Increasing Area): for each height component, reindex
the tasks within the component in order of nondecreasing area and assign them in
sequence to shelves, which we again regard as bins of size m. Fach task is assigned to
the first shelf on which it fits, and the number of shelves is incremented by one whenever
a task does not fit on any preceding shelf. (The rest of the algorithm, including the
partitioning of the tasks into height components, and the combining of the shelves of
the various components, remains the same.) We call this algorithm ~+-SMARTFr1A-

The main result in this section is the following theorem.

Theorem 4.3.1 For any nonmalleable task set T, the 9-SMARTgpra algorithm satis-

fies
Rppia(T) < 6Ar +5Hr —5Ur < 8R*(T). (154)

Its running time is O(nlog n).
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Corollary 4.3.1 There is a MACT algorithm with appromimationfactor 8 and running
time O(n® 4+ mn), and another with approgimation factor 16 and running time O(n® +

mn).

Proof: The first algorithm follows from Corollary 3.2.1, and the second from Corol-
lary 3.3.1. In both cases a = 1, s0 there are no conditions on T except that w; =1 for
all 7. a

We obtain an upper bound on Rppia(T) in the same manner as we obtained a
bound on Ryrrw(T') in Qection 4.2. We partition the task set T into T3 and T, in the
same way, and prove bounds for schedules for the two subsets separately. Then we
consider the result of combining the two schedules. However, we make use of a slightly
different y-height construction. In particular, we construct a new task set T using the
height i, = Allo& t:1 only for tasks 1 € T,. For tasks 1 € T,, we use the height of the
shelf containing task ¢, i.e., 7. = max{t; : St(J) = Sr(i)}, where St denotes the shelf
assignment that results from applying ~-SMARTFrIA to the task set T'. Observe that
Lemmas 4.2.1, 4.2.2, and 4.2.3 all apply to the new construction 7. The improvement
in the approximation factor is the result of replacing Lemma 4.2.5 with the following

lemnma.
Lemma 4.3.1 Ifv 22, then the partition T, satisfies R(TQ,ST) < (AT — Ar,)-

Given this result, we do not need a bound on Az relative to Ap. However, we still need
to bound Hy, relative to Hr,, and for this purpose, we make use of a restricted form

of Lemma 4.2.4 adapted to the new construction.

Lemma 4.3.2 For any task set T, we have Hy, < ~vHr,.
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Proof: For any task i € Ty, we have §. = llosytil < ylosrtitl = ;. Now it follows

directly that Hy < vHr.

O

Now choosing v > 2 and applying Lemmas 4.2.1, 4.2.2, 4.2.3, 4.3.1, and 4.3.2 yields

Reria(T) < R(T,St) + Hr — Hy

. 1 5
< (§+41): R(Ty,S1) + (5— +1)- R(T»,Sr) + Hr — Hy

AN

) )

1 1 . |
+(5 + DAr —7(5 + DAz + -;Y-?_—-—l-(é +1)Hy, — Hp + Hr

1 1 ]
= vy(=+1)Ar — (= +1)Ar, + —-:Y-—-((S*{- 1) — l} Hz — Hy, + Hr

) )

v —1
r 2

1 1 .
—<- ’Y(S + 1)AT - 7(—' “+ 1)AT1 + i (5 + 1) - ’Y} HT1 - HTz + HT

) 17— 1

[ 2

1 1
= G DA (G AR T (541)~1+1] (Hr = Hn)

v -

1 o
7(E+1)AT+[7~1(6+1)~’Y+1} Hr

IN

1 72
—-’y(5+1)UT1 - [7 _~1(5+1)—7+1] Ur,

A

1 2 .
’Y(S+1)AT+ [711(5+1)~—7+1} Hry

1 2
— min {7(3 + 1), ;-7:—1-(5 +1)—7v+ 1} Ur.

Then by Corollary 2.1.2, we have
1 2

RFFIA(T) _<__ max {”y’(% -+ 1), %(8‘ -+ 1) -+ :Yj;—'l“(cs + 1) - -+ 1} . R*(T)

Now choosing 7 = 2 and § = 3, we get

Rrpia(T) < 6Ar + 5Hr —5Ur

and

1 2
Reria(T) < %(3— +1)+ ;l_—_—I(cS +1)—v+ 1} R*(T)

< 8R(T).

(155)

(156)

(157)

(158)
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This completes the proof of the approximation factor of Theorem 4.3.1. As for the
running time, note that the FFIA packing of the tasks onto shelves can be computed in
O(nlogn) steps using the method described by Johnson [27, 28]. We will conclude this
section with a proof Lemma 4.3.1. The proof will make use of the following alternate

definition of Ar.

Lemma 4.3.3 Let T be a set of unweighted nonmalleable tasks, indezed arbitrarily.
Then
1 no 1 .
Ar = — ZZmln{ai,aj}. (159)

i=1 j=1
Proof: Observe that i 23':1 min{ai,a;} = iz min{a;, a;} is the sum over all
pairs of elements of the minimum of each pair. This sum is independent of the way
the elements are indexed. Suppose, then, that they are indexed by nondecreasing area,
a < ag <or Sl Then & ey Z§=1 min{a;, a;} = eI Z;—_—x a; = Ar. O
Proof of Lemma 4.3.1: The proof is similar to the proof of Lemma 4.2.5. Let
v(k) = mingT(i),__k{ai} be the area of the least-area task in T on shelf k. Note that the
area in question is the task’s original area, not its area in 7. Then reindex the shelves
in (T, St) so that v(k) < v(k+1) for all shelves k. That is, we are ordering the shelves
by nondecreasing area of the least-area task. Take the shelves of (Ty, St) in the order
they are indexed, and call this schedule Y. Let g; denote the completion time of task
i € Ty in the schedule Y, and let RY = ich, Ui be the total completion time of V.
QOur goal 1s to relate each task’s completion time g; to its contribution to Ar. For
this purpose, we reindex the tasks so that Sr(i) < Sr(y) =1 < j. That is, tasks that

appear on lower shelves have lower indices. Also, within each shelf, tasks are indexed
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by nondecreasing area. Then define
= min{a;, a5} (160)
i=1

By Lemma 4.3.3, we have

H

3!*‘*

i (161)

Also note that

31’—*

Z (162)
ey

and these quantities will be unequal if there is some ¢ € T, for which ¢; includes tasks
that are not in Ty. Our goal is to show that ¢; < Lo for all i € Ty. Using Lemma 4.1.1
along with (161) and (162), we will then conclude that
R(THSr) S S s <= ai=1 ( Sa-— 3 at) < y(Ar — Ar).  (163)
— m m 7 m T
To prove that g; < Lo, we will begin by proving a similar result for each individual
height component. For a given task i, consider the schedule consisting only of the
shelves in (T, Sr) that contain tasks that are in the same height component as i, with
the shelves ordered as they are in V. Note that this is the order in which the shelves
are created when the tasks are packed onto shelves using FFIA. Call this schedule Y(z).
For i € Ty, let g¢ denote the completion time of task ¢ in V(7). Also let
o= Y. min{a;q;}, (164)
J<ing~i
where i ~ j indicates that tasks i and j are in the same height component. Then we

have the following result pertaining to individual height c..mponents.

Lemma 4.3.4 ¢} < To; for all v € Ty.
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Let us delay the proof of Lemma 4.3.4 until the completion of the proof of Lemma 4.3.1.

Now we are ready to show that ¢; < Lo for all ¢+ € T,. Pick any task Jo € Ts.
Suppose that there are r height components, other than the component containing the
task jo itself, that contain a shelf that comes before jo in the schedule Y. For each
such component [ € [r], let 4 be 2 least-area task on the last shelf of the component
that comes before the shelf containing jo. Also let 1o be the task with least index on
the shelf containing jo. Then ai < aj,. Note that the indexing of the shelves and the

indexing of the tasks guarantee that iy < jo for alll € [r]. Also note that a;, < @i, < %o

for all | € [r]. Now applying Lemma 4.3.4, we have

r

Jjo =~ Z S ..,_Za“ = Z Z min{alza } < Mzmln{a’m’a]} '“ajo

g, =
=0 M=o L) 7<n/\7~u
(165)

u

Proof of Lemma 4.3.4: Let jo be any task in T, and let T = {1 € . i~ jo} be the

height component containing Jjo- Index the shelves in (T°,St) according to the order

in which they were created. Then shelf 1 is in (Tl,ST) and shelf 2 is the first shelf in
Y(jo). Note that tasks in T, contribute to oy, but not t0 G-

Let shelf ko be the shelf containing the task jo. Let K = [ko— 1] be the set of shelves
that precede the task jo in the schedule Y(J0), along with the shelf from (T°, St) that
is in (Th,ST)- We will examine the shelves in K and determine the contribution of
each to g, and to of,. For this purpose, we will partition K into three subsets. Some
additional notation ;s required first.

Let S7'(k) denote the set of tasks on shelf k. Define the gap of shelf k with respect
to task jo to be

dk =m — Z pi- (166)

{ies;‘ (k):a.'gam}
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Then dj is “how much room” is left on shelf k at the time when task jo is assigned to
a shelf. (If there are tasks on shelf k with the same area as jo, then dj may be less
than the amount of room that is left on shelf Lk when . is assigned to a sheii.; Note
that di < pj, for all k € K due to the use of first fit. Also note that there is at most
one shelf k € K such that d, > m/2. Let v denote this shelf if it exists; otherwise, let
v = co. Let K~ = K\{1}. That is, K~ is the set of shelves in Y(jo) that come before
task 7o

Now we are ready to partition K into three subsets. Let
K,=4{ke K :3he Sz (k) such that ai > ajo (167)
be the set of shelves containing a task larger than jo, but not including shelf 1. Let
K,={ke K \Ki: k>v} (168)

be the set of shelves that do not contain any tasks larger than Jo and that are scheduled

after the shelf with d, 2 m /2. Finally, let
K ={ke K"\ K k< wv}u{l} (169)

be the remaining shelves — shelf 1 along with all shelves that do not contain any tasks
larger than jo and that are scheduled not later than the shelf with d, 2 m /2.

Let h = /'8 tio] be the maximum possible height of a shelf in (T°,St), and let the
height of shelf k be given by h/y+zk, where 0 < Tk < (1—1/7)h. Then the completion
time of task jo in Y(jo) does not exceed h plus the sum of the heights of the shelves
that precede it in Y(j0). That is,

g, < 3 (@e+h/y)+h (170)
keK™




offy = z min{hajo,aj} > 2 Z min{ajo,aj} + @jo- (171)
j<jonirio keK jes;‘(k)
jab
v . gl
=G Z m min{aie aiF TRt S @k hjy) —h
keK jes;l(k) keK ™
v .
= > \m S min{aiaiy — (T +h/v)
ver- | iest ) 4
+ us m’m{ajo,aj} 4 =i ~ h. (172)
m . e-l m
JEST 68)
ke K7, define
~ .
M=o S min{aj i) — (T +h(7): (173)
jesz (k)
efine
51 = 2 Ak (174)
jeKa
5, = 2 (175)
jeK2
S, = A+ jﬂ; m'm{ajo,aj} + %a,jo — h. (176)
jeRa\{1} jesz ()

(172) we have

sp from
g g : gl
Tnaljo - 99‘0 Z z A+ 'T’n z mln{ajov a‘j} + Tnajo —h
keK~ jes;‘m
G, + S2+ S% (117
> (. We will do this by showing S, >0

w that S1+Sz+53 Z
t least one task on

ur goal 18 to sho
e Ki- There 18 2

Now 0
To see that S, 20, consider any k

‘or each 1 € 131
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shelf k with area greater than ajo, 50

S min{aj, e} 2 % T > a;

jeSTH(R) {jeSgt(k)aj<ay}

h
ajq + = ( Z Pj)
v {jeS7  (k):a;j<ajo}

h
= ajo T (M= d)

h, h
= aj,— et I (178)

[\

It follows from (173) and (178) that

M 2

(U’jo - %dk> +h = (zk+h/7)

3=

(179)

ot

>

?

because aj, = tioPio =~ %dk, and h > zk + h/7. So S1 = Likek, Ar 2 0.
Next consider k € K. Suppose ¢ € S7'(k). By the definition of Ko, we have

Sr(q) > v and aq < Gjo> and so pg > dy 2 M /2. Therefore, shelf k contains only one

task gq. We conclude that

2
Ak = laq —tg 2 —Pqtg = ta > 0, (180)
m m

because p, > /2. Then Sy = Skek, Mk 2 0-

Finally, consider the shelves in K3. Let 1 = ki < ky, < -+ < kr denote all the
shelves in K3. By the definition of K3, each shelf kg with ¢ > 1 contains no task with
area exceeding aj,. Also observe that the tallest task on shelf kg has width greater than
dy,_, (as do a1l the tasks on that shelf) and height h/vy + 2k, Then for ¢ > 1, we have

S min{aj, e} = > a

jesy" (kq) jest" (kq)
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h
Z Pi + mkqqu—i

> -
7 jeszt (ko)
h
= ~{m- dig) + Thao-” (181)
Now from (173) and (181) 1% follows that for ¢ =~ 1, we have
hd d
Meg 2 h”ﬂ+w~(mkq+h/q)
m m
hd T d
= (1- 1/7)h — Tka ~ il S Y ko ozt (182)
m m
For shelf Lk =1, we have
z min{,ajov CL]'} P a;
jeszt() {jeS;l(l)tajéam}
h
> - ( >, ij
T \(ess (i<l
_ M=) (183)
Al
Then from (176), (182), and (183), we have
Sy = Ak T l min{ajo,aj} + lajo —h
keKa\{1} M eszt (1) m
4 hd o d hd
Z Zx(lw—l/’y)h—-—mkq—— kq +"Ymkq kqﬁl‘\""h"‘*"'}"*"lajo”‘h
) m m m m
T hd Tk, Dkg hd
_ $lammne i, | P2k | S0 S
o m m m
hdk, Tk, dkgr hd
= 2 XU R s \ M
o m m m
r by 2mgdrgn | _ 1Y
z ZX(Pl/”f)h“wkr?(l—-l/ﬂﬂﬁ:’ Lk X iy Lag,
= m m m
r 2d h
RIS P
m m 5
(184)
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For the last inequality, observe that k-1 < k, < v, and so di,y < m/2 for all ¢ €

{2,...,m% and also that aj, = tjPio ~ %dkr. g

4.4 Worst-Case Examples

We first present a family of unweighted nonmalleable task sets for which 2-SMARTFrIA
produces a ratio Reria(T)/ R*(T) approaching 9 /2 asymptotically. There are two
groups of tasks, a height group and an area group. The tasks in the height group
fit onto r — 1 shelves of heights 4,8, 16,...,27, with the number of tasks on each shelf
being equal to the height of that shelf. On the shelf of height 2 there is one task of
full height 2. All other tasks on the shelf are of height slightly larger than 2571, The
width of each task in the height group is 1, and m is chosen large enough so that the
total number of tasks i1 the height group 1s less than m/4. The area group consists of
q shelves of height 2, with 2 tasks on each shelf: one of width m/2 and height 1+ 4/m,
and the other of width m /4 + 1 and height 2. (This 1s the shelf assignment produced
by 9 SMARTFFIA-) All shelves k in both groups have Hie/ Wi = 1, 80 the ordering of
the shelves is immaterial.

On the other hand, the optimal schedule consists of the height group tasks placed
side by side with three stacks that each contain ¢/6 of the narrower tasks in the area
group. On top of these three stacks are placed side by side a stack of the ¢/2 remaining

narrow tasks, and a stack of the g wide tasks. Then one can show that

RFFIA(T) _ 2.4" + 2q2 -+ 4q2’"

—_— 185
q,r‘l—r-{loo R*(T) %41‘ + %q2 ( )
Now choosing ¢ = qo2", we have
R T 2 +2q3+4
lim peia(T) _ 2+ 2q0 + 20 (186)

oo R*(T) 24348




Therefore, if We choose go = —12;, then the result is

lim Rera(T) _ 9
r—¥00 R*(T) 2

(187)

For the weighted case, there 1s 2 similar family of nonmalleable task sets for which
1.718~SMARTNFIW produces & ratio RNFIW (T)/ R*(T) approaching approximately 6.757
asymptoticaﬂy. Once agail, there 18 @ height group and an area group- The tasks 1
the height group At onto T shelves of heights L LTS 4", with two tasks on each
shelf. On the shelf of height ~* there s one task of height ~* and weight €; the other
task is of height slightly greater than ¢~ and weight vk — €, where e is near 0. All
tasks in the height group have width 1. Note that the total number of tasks in the
height group s 2r. We will choose m such that m > 7T The area group consists of ¢
shelves of height 1, with 2 tasks on each shelf: one of width (m —27) /2, height slightly
greater than 1/, and weight (m — or)/(m + 21 + 9), and the other of width 27 + 1,
height 1, and weight 2(2r + 1)/(m +2r + 9). (This is the shelf assignment produced
by *y-SMARTNFIw.) Once again, all shelves k in both groups have Hi/ Wk = 1, so the
ordering of the shelves 18 immaterial.

For m > T the optimal schedule consists of the height group tasks placed side by
side with two stacks that each contain q/2 area group tasks of width (m — 2r) /2. The

tasks of the area group of width 2r + 1 are started after the completion of the wider

tasks. Then one can show that

(2v—1 r r
C Raew(T) _ e L+ 750
im —a Y o 4 Lg? —- (188)
aree RA(T) =7 + 54

Now choosing ¢ = qoY" yields

(2 —1)
i Rurw(T) _ T S+ Lgg + 7190
m — /—«/7 3 . (189)
e RY(T) g T D
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We now choose

272 — 4 14+ /874 163 16~2 — 8 1
go = _;Y_ﬂ___lj‘..j—e%i ’i_l_j_'__,,fl...-—j—i—— ~ 2.475612, (190)
and the result 18
~ Rnrw(T)
m —— e~ 6.7570742.
Y, == (T (191)

4.5 A Practical Tip

There 18 2 simple modification of our algorithms that is likely to result 1n improved
schedules. In particular, we have used shelf schedules only for the purpose of analysis.
There is no reason why we should delay starting the tasks on a particular shelf until
every task on the preceding shelf is completed. Tt is enough if no task begins execution
until every task on the preceding shelves has begun execution. This will guarantee
» schedule that is at least as good as the SMART schedule. The following algorithm
produces schedules that meet this criterion. Use SMART to pack the tasks onto shelves
and to order the shelves. Then begin with the first shelf. Whenever processors are
free, schedule the first task on the current shelf whose processor requirement does not
exceed the number of free ProCessors. When all the tasks on the current shelf have

been scheduled, go on to the next shelf.
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5.1 The Lower Bound

A common lower bound used - minimum makespan problems is the ~aximum of two
lower bounds: the maximum execution time of any task, and total work divided by
the number of processors 1. As before, we will 'et T’ denote a set of malleable tasks,
and T'(p) denote the set of nonmalleable tasks corresponding to the task set T and the
allotment p. Let

he(p) = max{t:(p:)} (192)

be the maximum execution time of a task in T(p), and let
_ R .
ur(p) = — > piti(pi) (193)
m iz
be the total work divided by the number of processors available. Then

wr(p) = max{ur(p), hr(P)} (194)

is a lower bound on makespan for the nonmalleable task set T(p), and
wr = mig{wr(P)} (195)

is a lower bound on makespan for the malleable task set T', where M = M; x Mg x---X
M,, denotes the set of all possible allotments of processors to T'. Observe that (195)
defines a makespan allotment selection problem.

We will say that an NMM algorithm 1s p-bounded if for any nonmalleable task set
T(p) it constructs a schedule with makespan not exceeding pwr(p). Similarly, an MM
algorithm is p-bounded if for any malleable task set T it constructs a schedule with
makespan not exceeding pwr- Then a p-bounded algorithm for either problem is also a

p-approzimate algorithm.
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GMM processors running time work

or MMM?7
MMM n O(log*(mn)) O(nlog’(mn))
GMM n O(m + log” n) O(mn +nlog” n)
OMM | mnlogm/log”(mn) +n O(log”(mn)) | O(mnlogm +n log” n)
GMM mn O(log(mn)) O(mnlog(mn))

Table 3: EREW PRAM algorithms for makespan allotment selection

5.2 Allotment Selection

An algorithm for the makespan allotment selection problem will allow us to transform
any p-bounded NMM algorithm into a p-bounded (and hence p-approximate) MM al-
gorithm. Since the best known NMM algorithms for lines and otherwise are p-bounded,
we can duplicate for MM the approximation factors of these NMM algorithms using

the following theorem.

Theorem 5.2.1 There is an algorithm for the makespan allotment selection problem
with running time O(mn). If the tasks satisfy the nondecreasing work and nonincreasing
ezecution time conditions, then the running time is O(n log® m). There are also EREW

PRAM algorithms for the makespan allotment selection problem as shown in Table 3.

Corollary 5.2.1 Suppose we are given a p-bounded NMM algorithm with running time
Q(m,n). Then there is a p-bounded GMM algorithm with running time O(mn) +
Q(m,n), and a p-bounded MMM algorithm with running time O(nlog?m) + Q(m,n).
If the NMM algorithm applies to scheduling on a line, then so do the GMM and MMM

algorithms.

Proof: For any malleable task set T, we can use the algorithm of Theorem 5.2.1 to find

an allotment p such that wr(p) = wr- Then we can use the p-bounded NMM algorithm
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to produce a schedule for T(p) with makespan not greater than pwr(p) = pwr- a

The immediate consequences of Corollary 5.2.1 are summarized in Table 2. The
MM algorithms in this table are obtained using the NMM algorithms due to Garey and
Graham [22], Steinberg (53], and Sleator [51].

The extension of an NMM algorithm to a GMM algorithm given by Corollary 5.2.1
is nearly optimal in the following sense. Any NMM instance can also be formulated
as an MMM instance, and therefore any algorithm for MMM or GMM can also be ap-
plied to NMM. Now suppose that any p-approximate algorithm for NMM has running
time (Q*(m,n)). Then any p-approximate algorithm for MMM or GMM also has
running time Q(Q*(m,n)). Furthermore, an MM algorithm must inspect every value
of the function t; for each task : if it is to guarantee a constant approximation factor.
Therefore, its running time is Q(mn + Q*(m,n)). The running time of a GMM algo-
rithm based on our makespan allotment selection algorithm comes to within a constant
factor of reaching this bound, assuming that there is a p-bounded NMM algorithm with
running time O(Q*(m,n)).

In the rest of this section we give a proof of Theorem 5.9.1. We will first show how
to transform a GMM instance into an MMM instance, and then show how to solve the
allotment selection problem for MMM. We will then consider how these methods can

be adapted to run on an EREW PRAM.

52.1 Transforming a GMM Instance into an MMM Instance

The first step in our makespan allotment selection algorithm is to transform a GMM
‘nstance into an MMM instance by discarding allotments that violate the nondecreasing

work and nonincreasing execution time conditions. In particular, for each task 1, create
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aﬂotment to task 1 for which

creasing the execution

0cessoTs without in

e the number of pr
e work. That 18,

out increasing th

ase the pumber of processors with
(5) < kti(k), and let

,or to incre
nd ti(_ﬂ é_ ti(k), o1

ej%ikifj<ka j>kandjti
M =1k € M, :3j € M such that J =i kY. (196)
p oli, 1) < o, 2) < < oli, 20l be all the clements of M!, and let t{i, 7] denote
e execution ¢ime of task ; when vt ;] processors are allotted 0 it. That 1, tli, 51 =
[n] and jE (2l — 1], we have

(vli, ). Then for all i €
i, g1 > a3 T 1) (197)
and
vli, 31 1,91 < oliy g+ 11 ti,5 + 1) (198)
at this procedure

Thus we have att .nstance of MMM. The following lemma guarantees th

ptimal allotment.

not discard the o
e M\ Mi for

ksetT with pi
e M; and wr(g) € wr(D)-

does
r the malleable tas

T such that gi

Lemma 5.92.1 LetP be any allotment fo
somel € nl- Then there 15 6™ allotment @ for
o will make use of an alternate characterization of the rela-

To prove this lemma; W

tion =i
Lemma 5.2.2 ] =i k if and only if t:(9) < ti(k) and jt:(9) < kti(k), with at least one

lities being strict.
> k and

of the inequad
) < t;(k), or else J

k. Then either 7 < k and (g
If instead j >k and

f. Suppose that J =i
) < ti(k), then

Proo
jti(d) < kt;(k)- <k and t:(J jtilg) < kti(k)-
i) S kt;(k), then t:(7) < (k) This completes the “only " part.
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For the “if" part, suppose that ti(5) < ti(k) and jti(4) < kti(k). Since at least one
of the inequalities is strict, we have j # k. Then it follows directly that j < k. a

The next lemma is an immediate consequence of Lemma 5.2.2.
Lemma 5.2.3 The relation <; has the following properties:

1. if j =i k, then k 475

2. ifj <ik and k < l, then j =i l.

Proof of Lemma 5.2.1: By the definition of M!, for any k € M; \ M!, there exists
j € M; such that j <; k. By Lemma 5.2.3, there can be no cycles such that ky =< ko <
oo < ky =i k1. We conclude that if k € M; \ M|, then there exists j € M] such that
7 =i k.

o define an allotment g for T by taking q = pi for all [ # i, and choosing ¢i € M;
such that g; <: pi- By Lemma 5.2.2, we have ti(q:) < t:(pi) and giti(gi) < piti(pi). Then
hr(q) < hr(p) and ur(q) < ur(p), and therefore wr(g) < wr(P)- d

Now if we let M' = M{ x My x - X M, then the following lemma, which is a direct

e

consequence of Lemma 5.2.1, demonstrates that an optimal allotment is preserved.

Lemma 5.2.4
I%%{WT(I’)} = rﬁrégg{w:r(p)}- (199)
Each set M/ can be computed in O(m) time, O the total running time of this

procedure is O(mn). If we begin with an MMM instance, then it is unnecessary.

5.2.2 Choosing a Target

The main idea in selecting an allotment for an MMM instance is to restrict the possible

choices of p, and in so doing to transform wr(p) into a function of a single variable.
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us begin by rewriting the bound given B (195) as

wr = gg}l\%{wT(ﬁ)}
= zninmax{UT(ﬁ),hT(ﬁ)}
peM’
= min mi max{ur(P)T
TE]R{;?EM':}LT({)):T} { T(p) }
— minmaxiT, min ur(P) - 200
relR { (ﬁENI’:hT(ﬁ)z:T} T(p)} ( )

Tt follows from (200) that we can restrict 7 10 the set
x = {hr(p):PE M'Y. (201)

We can view T as a target for the value of wr: given @ target 7, W€ consider only
allotments P such that he(P) = T and attempt tO minimize ur(P) subject to this

restriction. For this purpos® forall 7 € X, let
5i(r) = mindJ : i, g ST (202)

Then vt Gi(m)) 18 the minimum number of processors that can be assigned 10 task 1
so that its execution tme is not more than 7. Now @ target T € X determines ail
allotment P bY taking Pi = iz, ji(r)) for all i € [nl- The following lemma shows that

this is the desired allotment.

Lemma 5.2.5 Given T c X, define an allotment P by taking Pi = U{i,ji(f)]. Then

he(p) =T and ur(P) = m.‘n{éEM’:hT(zﬂ:T}{_UT(Q)}'

Proof: To see that hr(P) =T first observe that since T € X, there exist 10 and Jo such
that t{io,jd _ 7. Now there call be no j < Jo for which tlio, ) < t{io,jol, as that would
violate the ponincreasing execution time condition. It follows that tlro, Ji (M) =T

Since ﬂi,ji('rﬂ < r for ali € [nl, we conclude that he(p) =T
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Now consider any allotment g € M'. We will show that either hy(g) > T, or else
ur(g) > ur(p). Fix some i € [n). Since § € M’, there is some j such that ¢ = v[t, 5]
Suppose that j < ji(r). Then by (202), we have ti(q) = tle,q] > 7 and therefore
hy(g) > 7. Suppose instead that j > ji(7). Then by the nondecreasing work condition,
we have

Qiti(qi) = U['L7.7] : t[lvj] > U[iaji(T)] : t[i7ji(’r)] = Piti(pi)- (203)

We conclude that if hr(g) < 7, then ur(g) > ur(p)- o

For a target 7 € X and an allotment p given by pi = vli, ji(7)], define

W(r) = ur(p) = 2: i, (). (204)

1
m
Then it follows directly from Lemma 5.2.5 that

W(r)= e M{I;Lg%p)_f}{w(p)} (205)

Now (200) can be written as
wr = rl’él)rcl max{T, W(7)}. (206)

We will view the makespan allotment selection problem in terms of (206) rather
than (195). That is, rather than seeking an allotment p that satisfies wr(p) = w1,
we will seek a target T that satisfies max{r, W(7)} = wr. Once we have found
such a 7, then taking pi = wli, ji()] will yield an allotment p satisfying wr(p) =
max{hr(p), ur(p)} = max{r, W(7)} = wr-

Now that we have transformed wr(p) into a function of a single variable, namely

max{7, W(r)}, we turn our attention to locating the minimum of this function.

Lemma 5.2.6 W(7) is a nonincreasing function of T.
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»roof: Let ' > T, where r,r e X. Then for all tasks 1, we have JHC S 3:(7)- Then

¢ follows from the nondecreasing work condition that W(7") = W(r). O

Lemma 5.2.7 Let 7 € X be such that T Z W(r). Then for all + ¢ X such that

+ > r, we have max{'r’,W(T')} > maX{T,W(T)}-

Proof: By Lemma 59.6, W(T) 2 W(r'), and s0 r>T 2 wWi(r) =z w(r"). Therefore,

max{7’, W()y=1>7= max{T, w(r)}- i

Lemma 5.2.8 Let T € X be such that 7 < w(r). Then for all + ¢ X such that

<, we have max{f’,VV(T’)} > max{T,VV(T)}.

Proof: By Lemma 592.6, W(T) = w(r"), andso T ST < Wi(r) £ w(t"). Therefore,
max{7’s w(m)} = w2 W(r)= max{r,W(T)}. ]

I,emmas 5.2.7 and 5.2.8 suggest the following strategy for computing Wr: Since the
arrays o, x| are sorted, they can be merged in time O(mn 108 n) to obtain the set X in
Jecreasing order. Then a binary search on this sequence can be used to find the value
of 7 that minimizes max{T, W(r)} asin (206). The binary search requires O(log(mn))
probes. Each probe takes O(nlog m) steps, because evaluating W (7) requires n binary
gearches on sorted lists of length ab most M. Therefore, the total running time of
this algorithm is dominated by the merge, and 1s O(mn log n)- We now present an

alternative algorithm for computing wT that has running time O(n log” m)-

523 A Target Selection Algorithm

As above, W€ restrict 7 0 be in the seb X, but 1n this algorithm we do not merge the
arrays tlis *|. Rather, we keep them separate, and for each array we maintain a range

from which the value of T may be selected. We say that 2 task is active if its range
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is nonempty. Otherwise, it is inactive. The idea is to select the next 7 value so as to
cut the range in half for at least half of the active tasks The algorithm is given in
Figure 7. Note that the variable target corresponds to 7, and that for a gi*=n value of
target, tallot|i] corresponds to ji(target), and work/m corresponds to W (target). At any

given time during the algorithm’s execution, the set of potential target values is given

by {t[i,]] : lower[s] <j < upper(t]}.

Correctness

In order to demonstrate the algorithm’s correctness, we have two goals. One is to
show that a potential target is eliminated only if there is a better one. The other is
to show that max{r, W(r)} is improving for both “successful” targets (7 = W(r)) and
“unsuccessful” targets (7 < W (r)) as the algorithm progresses. These goals are stated
more formally in the three lemmas that follow.

Let 7, denote the value that is chosen for target in the kth iteration of the main

loop.

Lemma 5.2.9 At the end of the kth iteration, t[io, Jo] is not an element of the cur-
rent set of potential target values if and only if it satisfies one of the following three

conditions:
1. 7p such that hr(p) = t[z0, Jol;
9. 31 < k such that 1 < t[i0, Jo] and T 2 W(m);

2. 1< k such that 7, 2 tlio, Jo] and T < W(n).
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1. for each 1 € [n] do t[i,0] := 9 tli, 28] + 1) :=0;

2. low := max;{tl, A%

3. for each 1 € [n] do tower(i] :== 1, upperli] := max{j: thil 2 fow };

4. successful 1= 093 unsuccessful := 09

5. repeat

(a) for cach i such that lowerlil < upperli] do midli} = \(lowerm +
upper(il)/2);

(b) Let target be the median of the set {tli, mid{i]} : lowerli] < upperlil};

(c) for cach i € [n] do rallotfi] == mindj : t03l S target};

(d) work := P v{i,ta\\otm] * t[i,ta\\ot[in;

(e) achievedbound := max{work/m,target};

(f) if work/m < target then

. successful := achievedbound;
;1. for each i € [n] do sallot(i} := tallotlil;
i, for each i such that lowerli] < upperfi]
do lowerli] :== min{j : 1 < target};

(g) else
1. unsuccessful := achievedbound;
i, for each i € [n] do ualloti} := tallot(il;

i, for each i such that lowerli] < upperli]
do upperfl] := max{j: tlhil > target};

6. until towerli| > upperli] for all i € [nf;

7. if successful < unsuccessful then for each | € [n] do allot{i} := sallotli]
clse for each i € [n] do alloti] := uallotil;

Figure 7 Solving the makespan allotment selection problem. An efficient jmplementa-
tion requires keeping 2 list of active tasks.
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Lemma 5.2.10 Let iterations ki and ky be any two iterations such that Ty 2
W(rk,) and Tk, 2 W (rs,), an~ ‘uppose that ky < ko. Then max{7e, W(Tk)} >

max{ Tk, , W(Tk,)}-

Lemma 5.2.11 Let iterations k; and ko be any two iterations such that Tk, <
W(rk,) and Tk, < W (rx,), and suppose that ky < ko. Then max{Tk,, W(Te)} =

max{ Tk, W (k) }-

Proof of Lemma 5.2.9: The values in the arrays lower and upper are altered only
in Steps 3, 5(f)iii, and 5(g)iii; these are the only steps in which potential targets are
climinated. Each of these three steps corresponds to one of the three conditions in the
lemma. For each condition in turn, we will show that a potential target is eliminated
in the corresponding step if and only if it satisfies the condition.

First we will show that a time t[20, Jo) is climinated in Step 3 if and only if it satisfies
Condition 1. The shortest possible execution time of task s is t[, z[i]]. Therefore, for
any allotment p and any task i, we have hr(p) 2 t[i, z[t]]. That is, any allotment p
satisfies hr(p) 2 max;{t[i, z[1]]} = low. Now observe that if t[io, jo] is eliminated in
Step 3, then it satisfies t[t0, jo] < low. We conclude that if a time t[io, Jo] is eliminated
in Step 3, then it satisfies Condition 1.

If t[i0,Jo] is not climinated in Step 3, then it satisfies tlio, Jo] = max;{t[¢, z[]]}-
Construct an allotment p as follows. Let pi, = vlio,jo], and let pi = vli, z[1]], for all
i # io. Then hr(p) = tlio, Jol, and therefore t[io, jo] does not satisfy Condition L.

Next we show that a tine t|i0, jo] has been climinated in Step 5(f)ili by the end
of iteration k if and only if there exists [ < k such that 7 < t[io, Jo] and 7 2 W(n).
Suppose that time t[io, jo] is climinated in Step 5(f)iii of iteration | < k. The fact

that Step 5(f)iii is executed in iteration [ indicates that the test in Step 5f 1s true;
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that is, 1 = W (™). Furthermore, Step 5(f)iii of iteration | only eliminates times t[z, 7
satisfying t(¢,j] = 7. We conclude that if t[io, jo] is eliminated in Step 5(f)iii of iteration
| < k,thenm < t[¢0, Jo] and 1 > W(n)-

Now suppose that there exists | < k such that 7 < tlio, jo] and T 2 W (m).
Then in iteration [, the test in Step 5f is true because 1 > W(m). After Step 5(f)iii,
t[io, lower[io]] < Ti < tlig, jo]. Then jo < lowerl[io], and so t[to, jo] has been eliminated.
Therefore, time t[io, Jo) 18 eliminated in Step 5(f)iii of some iteration not later than the
Lth iteration if and only if 1t satisfies Condition 2.

Finally we show that a time t[io, jo] has been climinated in Step 5(g)iil by the end
of iteration k if and only if there exists [ < k such that 7 > t[20, jo) and 7 < W(m).
Suppose that time t[i0, Jo| is eliminated in Step 5(g)ill of steration | < k. The fact
that Step 5(g)iil is executed in iteration !/ indicates that the test in Step 5f is false;
that is, 1 < W(m)- Furthermore, Step 5(g)iil of iteration [ only eliminates times [, 7]
satisfying t{i,J] < - We conclude that if t[to, o) 18 climinated in Step 5(g)iil of iteration
| <k, then 7 2 t[30, Jol and 7 < W(m)-

Now suppose that there exists | < k such that 7 > tlio, Jo] and 7t < W(m). Then
in iteration [, the test in Step 5f is false because 11 < W(m). After Step 5(g)iil,
t[t0, upperlio)] > 71 2 t[40, jo]. Then Jo > upper[io), and so t[40, jo] has been eliminated.
Therefore, time t[io, Jo| is eliminated in Step 5(g)iii of some iteration not later than the
Lth iteration if and only if it satisfies Condition 3. O

To prove Lemmas 5.9.10 and 5.2.11, we make use of the following lemmas.

Lemma 5.2.12 Let iteration ki be any iteration such that T > W(r, ). Let ko be

any iteration that follows k. Then Tk, < Tky+

Proof: Suppose that Tk, > g, Then Tk i eliminated from the set of potential targets



102

by the end of iteration ki, as it satisfies Condition 2 of Lemma 5.2.9. Then 75, can not

be the value of target in a subsequent iteration, which is & contradiction. a

Lemma 5.2.13 Let steration ki be any iteration such that Tk, < W(rk,). Let ko be

any iteration that follows ky. Then Tk, > Tk -

Proof: Suppose that Tk, < Tk Then T, 18 eliminated from the set of potential targets
by the end of iteration ki, as it satisfies Condition 3 of Lemma 5.2.9. Then 7%, can not
be the value of target in 2 subsequent iteration, which is a contradiction. 0
Proof of Lemma 5.2.10: By Lemma 5.2.12, we have Tk, < Tk Then the result
follows directly from Lemma 5.2.7. O
Proof of Lemma 5.2.11: By Lemma 5.2.13, we have Te, > Tk Then the result

follows directly from Lemma 5.2.8. 0

Lemma 5.2.14 The algorithm of Figure 7 correctly computes wr and finds an allot-

ment p such that wr = wr(P)-

Proof: By Lemma 5.2.9, when the main loop is entered, the set of potential tar-
gets is the set of possible values of hr(p). As we have already noted, (200) shows
that we need not consider any other values as potential targets. Furthermore, by
Lemmas 5.2.7, 5.2.8, and 5.2.9, a potential target T 18 eliminated only if there ex-
ists 7 such that max{m, W(n)} < max{r, W(r)}. Now at least one potential target
is eliminated in each iteration, and the algorithm does not terminate until all po-
tential targets have been eliminated. Therefore, there is some iteration ! such that
max{r, W(m)} = minrex max{r, W(7)} = wr-

Let iteration s be the last iteration satisfying 7s 2 W(rs). Let iteration u be the

last iteration satisfying 7, < W (Tw)- (The value of ma,x{Ts,W(Ts)} is stored in the
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show t[i, ji(7141)] < Tk DY considering what caused t[s, ji(7141)] to be eliminated as a
potential target, and then show T < t[¢, ji(Ti41) — 1] using the same approach.

Consider in turn each of the three possible causes given in Lemma 5.2.9 of the elim-
ination of t[z,7:(Ti41)] as a potential target. First suppose that there is no allotment p
satisfying hr(p) = t[t, ji(ri41)]. Then for every iteration k, we have 1 > tfa, Ji(mir1))s
since all of the potential targets that are climinated in Step 3 are less than all of the
potential targets that are not eliminated in that step.

Next suppose that there exists a < [ such that 7, < t(i, ji(mi41)] and 7o 2 W(r.). By
the definition of j;(7), we have i, 7i(i41)] < Ti4a. Before iteration [ +1, t[¢, ji(T141)] has
already been eliminated as a potential target, and so t[2, ji(mip1)] # Tipr. We conclude
that t[i, Ji(1141)] < 71415 and therefore also T, < Tit+1, contradicting Lemma 5.2.12.

Finally suppose that there exists b < [ such that 7 2 t[a, i Ti41)] and 7 < W (7).
Then by Lemma 5.2.13, for all k > [+ 1, we have 7x > Tp. Therefore, 7x > t[i,j,-(TIH)].

We conclude that in any case, for all k > [+ 1, we have 7 > t[, Ji(T141)]-

Now consider in turn each of the three possible causes of the elimination of
tfe, i) — 1] as a potential target. First suppose that there is no allotment p such
that hr(p) = tli, Ji(Ti41) — 1]. Then every target T selected by the algorithm satisfies
7 > t[i, (1) — 1]. But by the definition of j;(7), we have t[i, 5i(mi41) — 1] > 741, @
contradiction.

Next suppose that there exists @ < [ such that 7, < tle, ji(mi41) — 1} and 7. 2
W (r,). Then by Lemma 5.2.12, for all & > [ +1, we have 7y < T, and therefore
7 < t[2, 5i(m41) — 11

Finally suppose that there exists b < lsuchthat 7, = t[, ji(rie1)—1] and 7 < W ().

By the definition of 7:(7), we have tli, 7i(7i41) — 1] > 741, and therefore also 7, > Ti+1,
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Similarly, suppose that in some iteration, target < W (target). For at least half of
the active tasks, the median of the range is not greater than target. So for each of
these tasks, at least half of the values in its range are not greater than target. By
Lemma 5.2.9, all of these values are eliminated at the end of the iteration. a

Now we can obtaln an upper bound on the total number of active tasks over all
‘terations by considering the following (k, |)-pruning game. We are given k items. In
cach round of the game, at least half of the items take a nit. After an item has taken l
hits, it becomes inactive. When an item becomes inactive, 1t no longer participates in

the game.

Lemma 5.2.17 The total number of active items summed over all rounds of a (k,1)-

pruning game does not exceed 2kl

Proof: Let k; denote the number of active items at the beginning of round 4. (Then
k, = k.) Let r denote the number of rounds it takes to eliminate all of the items. Then
we wish to get an upper bound on Y iy ki-

In round i, at least k;/2 hits are distributed. Thus the total number of hits that are
distributed during the game is at least £ Yioy ki Fach item can take at most [ hits,
so the total number of hits distributed during the game is at most kl. Thus we have
LDDIREL S kl, and the lemma follows immediately. o

A task becomes inactive ofter it takes |logm|+1 hits, i.e., after the size of its range
has been cut in half |log m| + 1 times. Therefore, by Lemma 5.2.17, the total number
of active tasks summed over all iterations is at most 2n(|log m] +1). Thus the total
running time of the algorithm of Figure 7is O(n log® m).

This completes the proof that the makespan allotment selection problem can be

solved in O(n log? m) when the tasks satisfy the nondecreasing work and nonincreasing
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to Cole [15] and Ladner and Fischer [33]. (See Karp and Ramachandran’s survey [29]
for a discussion of parallel selection and sorting.) So after making this change to
Step 5b, the running time per iteration remains O(log(mn)). Therefore, we have a
makespan allotment selection algorithm for MMM with running time O(log?(mn)) on
an n-processor EREW PRAM.

To obtain a makespan allotment selection algorithm for GMM, we can do the trans-
formation from GMM to MMM in parallel. Note that in this transformation, the
sets M! are computed independently, and the time required is O(m) per task on a
single processor. Then we have an n-processor EREW PRAM algorithm with running
time O(m + log?(mn)) = O(m + log® n).

If more processors are available, then we can speed up the transformation from
GMM to MMM. In order to enforce decreasing execution times, we discard every al-
lotment j to task @ for which t:(7) = minke[jﬁl]{ti(k)}. For each task i, the values
minke[j,l]{ti(k)} can be computed for all j € M, in O(log m) steps using m processors
by applying a prefix operation. We can use a similar approach to enforce increasing
work. Therefore, all n sets M! can be computed in O(log m) steps using mmn proces-
sors. But since the allotment selection step has running time O(log*(mn)), we can use
fewer processors and slow down the transformation without affecting the overall run-
ning time. Thus we have an EREW PRAM algorithm with running time O(log*(mn))
using mnlogm/ log?(rnn) + n processors.

We can reduce the running time by adopting a different approach after the trans-

formation from GMM to MMM has been applied. Let

vli, z[1]] - tls, 2l if = 24
ulini] = [i, 2[3]] - tli, 2[2l] g = z2[1] (208)
vli, 7] - tl, 5] — i, j+1]-thJ+ 1] if j < 2[i].
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Now the algorithm is as follows. Sort the potential targets ¢[z, 7] in nondecreasing order.
Compute the prefix sums of the associated values of ulz,j]. Then for each potential
target T € {t[i, 7]} satisfying 7 > maxyem){t[k, 2[k]]}, the associated prefix sum is the
minimum total work required if every task has execution time not exceeding 7:
n 2l
S ik = Y Y ulik

{(i,k):t[i,k] <7} i=1 k=j;(7)

= > vli,5i(r)] - tli, Ji( )]

i=1

= mW(r). (209)
As noted above, sorting [15] and computing prefix sums [33] of mn items can both
be done in O(log(mn)) steps on an mn-processor EREW PRAM. Since we now have
a sorted list of all potential targets 7 along with the corresponding values of W(7),
we can in constant time determine for all ¢[z, 5] whether t[¢, 7] < 7* or [z, ] > 77,
where 7* is a target satisfying max{7*, W(7*)} = wr. Then an allotment p satisfying
wr(p) = wr can be constructed in constant time by taking p; = v[s,j] if ¢[z,5] < 7" <
t[1,7 — 1]. Therefore, we have an mn-processor EREW PRAM algorithm with running

time O(log(mn)).
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Chapter 6

Conclusions and Directions for

Future Work

We have presented a general approach to scheduling malleable tasks that involves sep-
arating the problem into two parts: choosing an allotment of processors to tasks,
and scheduling the resulting nonmalleable tasks. We have demonstrated how this
method can be applied both to minimizing average completion time and to minimizing
makespan. For each of these objectives, we have defined an allotment selection problem
and provided algorithms that produce exact or approximate solutions to this problem.
We have also described and analyzed three algorithms for scheduling nonmalleable tasks
to minimize average completion time. These results lead to several directions for future

work, including the following.

1. Extension to specific parallel architectures.

The problem of scheduling malleable tasks can be extended so that some network

topology is specified for the m processors, and each task is scheduled on a subset
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of processors with a particular interconnection network, rather than on an arbi-
trary subset [21, 20]. (Scheduling on a line of processors is one example of this.)
With the exception of the semi-oblivious algorithm, our allotment selection algo-
rithms for both average completion time and makespan apply to this extended
problem. Therefore, an algorithm for scheduling nonmalleable tasks on a partic-
ular architecture can be extended to an algorithm for scheduling malleable tasks
on the same architecture. Garey and Graham’s [22] list scheduling algorithm can
be adjusted to apply to hypercubes by arranging the tasks in nonincreasing order
of processor requirement, rather than taking them in an arbitrary order. This
yields a 2-approximate algorithm for MM on a hypercube. Li and Cheng [36] give
a 46 /7-approximate algorithm for packing in three dimensions, which is identical
to NMM on a 2-d mesh. The lower bound wr is used to prove the approxima-
tion factor, and therefore we have a 46/7-approximate algorithm for MM on a 2-d
mesh. It remains open to obtain results for NMWACT on these architectures, and

for both NMM and NMWACT on other architectures, including the 3-d mesh.

. Complexity of weighted allotment selection.

For the weighted average completion time objective, no polynomial-time exact
algorithm for the allotment selection problem is known. On the other hand,
neither is the problem known to be NP-complete. An interesting open problem

is to resolve the complexity of allotment selection for weighted tasks.

. Complexity of unweighted allotment selection.
For the unweighted average completion time objective, we have shown that the
allotment selection problem can be solved exactly in O(n®+mn) steps. In order to

get faster algorithms, we have settled for approximations. Another open problem
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is to find an exact algorithm for allotment selection with running time o(n®+mn)
— or, on the other hand, to show that an o(n®+mn) allotment selection algorithm

leads to an o(n®) weighted bipartite matching algorithm.

4. Improved analysis of the greedy and semi-oblivious algorithms.

The following conjecture would yield an improved upper bound on the optimiza-

tion problem (97).

Conjecture 6.0.1

T a; n
we{riesm) ) .
It can be shown that min,{F(1,1,7)} > (1 — 1/e)n, so from the conjecture we
would conclude that the greedy algorithm has approximation factor e/(e — 1) =
1.582, and the semi-oblivious algorithm has approximation factor 2e/(e — 1) ~
3.164. This results in improved approximation factors for several of our MACT

and MWACT algorithms.

5. Improved approximation factor for NMM.

While Garey and Graham [22] have shown that the approximation factor of 2
for list scheduling is tight when the tasks are taken in an arbitrary order, it may
be possible to obtain a better approximation factor by arranging the tasks in
a particular way. Ordering the tasks by nonincreasing execution time appears
to be a good candidate. Note that unless P = NP, there is no p-approximate
algorithm for NMM with p < 3/2. (The reduction is from PARTITION with unit

task execution times.)

6. Improved approximation factor for NMWACT.
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There is a substantial gap between the approximation factors we have shown for 2-
SMARTFria and v-SMARTNpiw and the worst case examples we constructed for

those algorithms. Closing this gap, preferably by improved analysis, is desirable.
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Appendix A

Proof of Lemmma 3.2.1

Proof of Lemma 3.2.1: Pick some task 1. For each j € [m], let {; denote the
line corresponding to the function C; (g, 7). Let z(j,k) denote the x-coordinate of the
intersection of the lines £; and ¢. That is, Ci,(z(J,k),7) = Ci(z(5, k), k). Let ¥(j)
denote the slope of £;. Then ¥(j) = 05t;,(7)/m.

Note that if v;,; = vi, j+1, then the interval corresponding to j processors is empty.
The algorithm in Figure 8 computes a list of the nonempty intervals for task ic. Upon
termination, the values of j for which the corresponding intervals (vi j41,viy;] are
nonempty are given by d[1] < d[2] < --- < d[r]. The interval corresponding to d[k]
is given by (v[k -+ 1], v[k]]. That is, Ciy(r) = Ciy(k, d[k]) for all u € (v[k + 1], v[K]].

For any iteration j, let the subscript j attached to a variable in the algorithm
indicate the value of that variable at the end of iteration j of the main loop (Step 2).
Then, for example, r; is the number of entries in the array d after iteration j. The

following lemma establisiies the algorithm’s correctness.

Lemma A.0.18 For any j € [m], we have
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2. for j:=1tom do

(a) while r > 0 and {¥(j) < ¥(d[r]) or z(j,d[r]) > v[r]} dor:=r—1;
(b) if r = 0 then
1L rie=r+1;
ii. dr] :=j;
i, v[r] =0, wi; vr+ 1] :=0;
(c) else if z(j,d[r]) > 0 then
Lri=r+41;
i dr] :=j;
iii. v[r] := z(j,d[r — 1]); v[r + 1] := 0;

Figure 8: Computing the intervals (v, j41, vio;] on which Cy (1) = Ci, (1, 7)
1. vj[rj + 1] =0, Vj[l] =y, W, and VJ'UC + 1] < Vj[k] for all k € [rj].
2. For any p € (0, %, w;], let k be such that p € (vj[k + 1], v;[k]]. Then

Ilrellijﬁl{cio(/ivl)} = Cj, (1, d}[k]) (211)

Note that by choosing j = m, it follows from the lemma that upon termination of the
algorithm, C;, (1) = Ci, (1, d[k]) for all x € (v[k + 1], v[k]].
Proof of Lemma A.0.18: We proceed by induction on j. After the first iteration, we
have r; = 1, di[1] = 1, v;[1] = =2, w;, and v4[2] = 0. Thus the lemma holds for j = 1.
Now we will show that the lemma holds for iteration 5 > 1, supposing that it holds
for the previous iteration.
In order to prove the first part of the lemma, it is necessary to show that if the
value of r is altered in Step 2a, then either the test in Step 2b or the test in Step 2c is

true. Let r; denote the value of r in iteration j upon termination of the while loop in
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Step 2a. Then we need to prove the following claim®.
Claim A.0.1 Ifrj <rj_y, then rj =0 or z(j,d;1[rj]) > 0.

Observe that if v is updated in iteration j, then it is updated either in Step 2(b)iii, or
else in Step 2(c)iii. By Claim A.0.1, if r is altered in iteration j, then v is also altered.
Therefore, to prove the first part of the lemma, we need only consider the possible
cases in which v is altered. Suppose that v is updated in Step 2(b)iii. Then r; = 1,
and so 0 = v,[2] < v;[1] = %, w;, as required. Suppose instead that v is updated in
Step 2(c)iii. Then for r = r; = rj — 1, the condition in Step 2c is true, the condition
in Step 2b is false, and the while loop condition in Step 2a is false. From the first of
these three facts, we have v;[r;] = z(j,d;-1[r;]) > 0 = v;[r; 4 1]. The second and third
of these facts together imply that z(J,d;—1[r7]) < vj-1[r;] = vj[r; — 1]. We conclude
that v,[r;] < vj[r; — 1]. Since the other entries of v are unchanged, this completes the
proof of the first part.

For the second part of the lemma, it is sufficient to show that at the end of j
iterations, the following conditions are satisfied for all p € (0,7, w;]. First, g is in
the interval corresponding to j processors if and only if minef;j{Ci, (1, 1)} = Cio(1,7)-
Second, if 4 is not in the interval corresponding to j processors, then it is in the same
interval that it was in after j — 1 iterations. These two conditions are stated more

formally in the following pair of claims.

Claim A.0.2 For any p € (0,5, wi], we have d;[r;] = j and p € (v [r; + 1], v4[r;]]

if and only if mine;1{Ci (4, 1)} = Cio (14, 7)-

1The claims in this section are not self-contained: they rely upon the induction hypothesis for
Lemma A.0.18.
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Claim A.0.3 For any p € (0,°%, wi], let k be such that p € (vi_1[k + 1], v,;—1[k]].

Then if dj[r;] = 7 but u & (v;[r; + 1], v;[r;]], then p € (v;[k + 1], v;[K]].

Now for the proof of the second part of Lemma A.0.18, pick any p € (0,7, w],
and let k be such that p € (v;[k + 1],v;[k]]. (Note that the first part of the lemma
guarantees that such a k exists.)

First consider the case d;[r;] # j. In this case, d and v are not changed in iteration j.

It also follows from Claim A.0.2 that Cj (g, J) > mime;1{Ci (¢, {)}. Thus we have

in{Ci, (¢,)} = min {Cy (1,1
r;gg]l{ o(p:0)} ,én[jl_rg]{c )

= Ci(p,d;j-1[k])

= Ci(s, d_,[k]) (212)
Next consider the case d;[r;] = j and k£ = r;. Then by Claim A.0.2 we have

rlrelgjrll{cio(/i,l)} = (1, 3) = Cig(p, d;[K]). (213)

Finally, suppose that d;[r;] = 7 and k& < r;. The only entry of d that is modified
in iteration j is d[r;], and therefore d;[k] = d;_1[k]. Since k # r;, it follows from
Claim A.0.2 that Ci, (1, 7) > mimep{Ci (1, 1)} It also follows from Claim A.0.3 that

p € (vj_1[k + 1],v;j-1[k]]. Then we have

min{Cl (i, )} = min {Cio(p, 1)}

= Cio (#7 d‘J'*l[k])
= Cy(p,d;[k]). (214)
0

Before presenting proofs of the three claims above, we will complete the proof of

Lemma 3.2.1 by showing that the algorithm of Figure 8 has running time O(m). First
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we will bound the number of iterations of the while loop in Step 2a. Observe that the
variable r is altered only by either adding 1 or subtracting 1. Its initial value is r = 0,
and it can be incremented at most once per iteration of the main loop (Step 2). Since
r is decremented in each iteration of the while loop, and the loop test guarantees that
r > 0 at all times, we conclude that the total number of iterations of the while loop
over the duration of the algorithm is at most m — 1, with each iteration taking constant
time. Excluding Step 2a, each of the m iterations of the main loop (Step 2) takes
constant time. (Note that the time required to compute Y7 w; can be apportioned
over the n tasks so that it takes constant time per task.) Therefore the total time is
O(m). O

The four lemmas that follow are useful for proving Claims A.0.1, A.0.2, and A.0.3.

Lemma A.0.19 If U(k;) < U(ky), then Ci(p, k1) > Ci(, ka) for all p < z(ki,k2),
and Ci,(p, k1) < Cio(p, k2) for all p > z(ky, k2).

Proof: We have

Cio(ﬂ? k2) - Cio(:u?kl) = [Cio(x(kla k2)7 k2) + \Il(k2) ' (/’L - x(k17k2))]
— [Cio(2(kr, ka), kr) + U (ky) - (1 — (kn, F2))]

= (U(kz) = U(k1))(p — z(k1, Fa)), (215)
and the result follows directly. O
Lemma A.0.20 If r; >0, then ¥(j) > ¥(d;-1[rj]).

Proof: When the while loop in Step 2a terminates, by definition we have r = r7, and

therefore the loop condition is false for r = r;. Then the result follows from the fact

that r; > 0. |
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Lemma A.0.21 If d;[r;] = j and r] >0, then v;[r;] = z(j, d;_1[r]]) > 0.

Proof: Since d;[r;] = j, either the condition in Step 2b is true in iteration j, or else
the condition in Step 2c is true in iteration j. Now r7 > 0, so it is the latter condition
that is true, and thus z(j,d;-1[r;]) > 0. Then following the assignments to the array v,
the value of v;[r;] will be as required. 0

The following lemma states that an entry k is removed from the array d in iteration 7

only if it is not superior to j anywhere in its interval.

Lemma A.0.22 If k < rj_1 and k > 1}, then Cy(p,5) < Ciy(p, di-1[k]) for all
p € (0, vy [K]].

Proof: We will consider two cases. First suppose that ¥(j) < ¥(d;_1[k]). Observe

that Ci,(1,7) = Ci(0,7) + p - ¥(7). Then it is sufficient to show that C;;(0,7) <

C;,(0,d;_1[k]). By our assumption, we have jt; (y) < dj-1[k]t;(dj-1[k]). Then

Cin(0,7) = wigtiy(J) [1 - %0 - %
<, dimlFlti(dima k] [1 1, 0 }
J 2 2m
= witio(di-alk]) [d—J—[k—]-(l - ﬁé_é_n%@}
< wiyty, (di—1[k]) [1 — %0 — @lz‘r_;.[fl}
= C;,(0,d;_1[k]). (216)

We conclude that Cy(u,j) < Ci(1,d;j-1[k]) for all p > 0.

Suppose instead that U(5) > U(d;_[k]). By Lemma A.0.19, we have C; (u,7) <
Cio(p,d;-1[k]) for all p < z(7,d;j—1[k]). Since k > r7, we know that the while loop test
in Step 2a is true for r = k. This implies that z(7,d;-1[k]) > v;_1[k]. We conclude that

Cio(1,7) £ Cio(p,dj-1[k]) for all p < vj4[]. O
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We are now ready to proceed with the proofs of Claims A.0.1, A.0.2, and A.0.3.
Proof of Claim A.0.1: Suppose to the contrary that 0 < r; < r;.; and

z(j,d;j1[r;]) < 0. By Lemma A.0.20, we have ¥(j) > W(d;_.[rj]). This and

Lemma A.0.19 together imply that

Ciy(11:3) > Cig (1, dj-a[r7]) for all p > z(j, dj-1[rj]). (217)
Now since r; < r;_;, by Lemma A.0.22 we have

Cio(14:3) < Cig(pt,dja[rj-1]) for all p € (0,v-1[rj]]. (218)

By induction we have v;_1[r;—1] > 0, and therefore v;_;[r;_1] > z(j,d;—1[r7]). Now it

follows from (217) and (218) that
Cig(vj-1[rj=a], dj-1[rj—1]) > Cip(via[rj-1], dima[r]), (219)

contradicting the induction hypothesis. a
Proof of Claim A.0.2: Pick any p € (0,57, w;]. For the “only if” part, suppose that
d;[r;] = 7 and g € (v;[r; + 1],v;[r;]]. Let k be such that p € (v;_[k + 1],v;-1[k]]. (The
first part of Lemma A.0.18 guarantees that such a k exists.) Then by the induction
hypothesis, we have C;,(u,d;—1[k]) = mimepj-11{Ci,(1,{)}. Also note that d;[r;] = 5
implies that r; = r; + 1.

We will consider three cases, starting with & > r;. In this case, it follows from

Lemma A.0.22 and the induction hypothesis that

Cio(/L?j) < Cio(:uvdj—l[k]) = [én[ji_nl]{ci(’(#’l)}' (220)

Next suppose that k£ < r;. Observe that the only entries of v that are modified in

iteration j are v[r;] and v[r; + 1]. Therefore v;[k] = v;_1[k] and v;[k + 1] = v;_1[k + 1],
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and so p € (v;[k + 1],v;[k]]. This is a contradiction: p belongs to two intervals that
do not overlap. Note that by the first part of Lemma A.0.18, v;|r;] < v;[k + 1], since
ry >k-+1.

Finally, consider the case k = r;. By Lemma A.0.20, we have U(5) > \I’(dj,,l[rj"]).
Also, by Lemma A.0.21 we have v;[r;] = z(j,d;_1[r;]). Therefore p < z(j,d;_1[r7]).

Then using Lemma A.0.19 and the induction hypothesis, we conclude that

Cio(/'l’aj) < Cio(:uvdj-l[rj_]) = C'l”o (:uvdj-l[k]) = lél[%{_nl]{czo(/"vl)} (221)

Now for the “if” part we will first consider the case d;[r;] # 7, and then the
case d;[r;] = 7 and p & (vj[r; + 1],v,[r;]], and in both cases show that Cj (x,7) >
mingep;{Ci, (1, 1) }-

First suppose that d;[r;] # j. Then for r = rj, the conditions in Steps 2b and 2c
are both false. That is, r; > 0 and z(7,d;1[r;]) < 0. Then from Claim A.0.1 we
have rj = rj_;. Also, by Lemma A.0.20 we have ¥(j) > W(d;-1[r;-1]). Since u >0 >
z(7,d;-1[rj-1]), using Lemma A.0.19 we conclude that Cy (u,7) > Ciy(p,dj-1[rj-1]) =
mingef;1{Cs (14, 1) }-

Next suppose that d;[r;] = j and p & (v;[r; + 1], v;[r;]]. Note that v;[r; +1] = 0,
and so it follows that g > v;[r;]. Now by the first part of Lemma A.0.18, v;[1] =
", w;, and therefore r; > 1. Then r; > 1, and so by Lemma A.0.20 it follows
that ¥(5) > U(d;_4[r;]). Also, by Lemma A.0.21 we have v;[r;] = z(j,d;—1[r}]).
Therefore p > z(j,d;-1[ry]), and so it follows from Lemma A.0.19 that Cj,(x,5) >
Cio (g, dj[rj—1]) > minge;i{Ci (11, 1) }- a
Proof of Claim A.0.3: We will suppose that d;[r;] = 7, and prove that p € (v;[r; +
1],v;[r;]] or p € (vj[k + 1],v;[k]]. We consider three cases.

For the first case, suppose that £ < r;. Note that because d;[r;] = j, we have
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r; = r; + 1. Observe that the only entries of v that are modified in iteration j are
v[r; + 1] and v[rj +2]. Therefore v;[k + 1] = vj_1[k + 1] and v;[k] = v;_1[k], and so
p € (vilk + 1], vi[k]].

For the second case, suppose that k = rj. Then v;[k] = v;_1[k] is not modified
in iteration j. Then we have v;[r; + 1] = 0 < v;_1[k 4+ 1] < v;_1[k] = v;[k], and
so u € (vj[r; + 1],v;[k]]. Now since r; = r; +1 = k + 1, we conclude that either
p € (vilrs + 1], v;[05]] or p € (vjlk + 1], v5[K]]-

For the third and final case, suppose that k& > r7. Then k& > r;, so we have
vi[r; + 1] = 0 < vj_1[k + 1] < vj1[k] < vjoalrj]. Now if we can show that vialr] <
v;[r;], then we can conclude that (vj_i[k+1],v;_1[k]] € (v;[r; + 1], v;[r;]], and therefore
u € (v;[r; + 1],v4[r;]]. So it only remains to show that v;[r;] > v;_i[r;]. We consider
two cases.

If rj =0, then the test in Step 2b is true, and so vj[r;] = Y%, wi. Furthermore,
r; = 1, and so by the induction hypothesis, v;_1[r;] = v;_1[1] = Z_%; wi. We conclude
that v;[r;] = v;-1[r;]-

Suppose instead that r; > 0. Note that r; < k <r;_;. Then by Lemma A.0.22, we

have

Cio(pt53) < Cig(p,dj—1lr; +1]) for all p € (0,v;-1[r; + 1]]. (222)

From the induction hypothesis, we have
Cio(1t,dj1[rs]) = lg;i_nu{cio(ﬂ,l)} for all 4 € (vj-1[r; + 1], vi-1[rs]l, (223)
from which it follows directly that

Cio(prdj1[r]) < Cig(p, dja[r7]) for all p € (vioalr; + 1], v5lr]]l. (224)




Since r; = r; + 1, it follows from (222) and (224) that

Cio(Vi-1lr;],7) < Cig(vjalr;], djalry]).

By Lemma A.0.20, we have
U(5) > ¥(dj-1[r5 ).

Now (225) and (226) together with Lemma A.0.19 yield
vii[r] < x(g,d;o (7))
Since Lemma A.0.21 implies that
vilrs] = z(3,d;[r7 1),
we conclude from (227) and (228) that
vlri] 2 vjalr),

as required.
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