
International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 15, November 2013

20

A Taxonomy and Survey of Scheduling Algorithms in

Cloud: based on Task Dependency

Ruby Annette. J
Research Scholar

B.S.Abdur Rahman University

Aisha Banu .W, Ph.D
 Professor, Department of CSE
 B.S.Abdur Rahman University

Shriram, Ph.D
 Professor, Department of CSE
 B.S.Abdur Rahman University

ABSTRACT

Cloud computing has made the dream of scalability of

resources on demand come true. As the usage of the resources

on the cloud involves cost, their optimal utilization is vital.

Various scheduling algorithms are being designed and

implemented seamlessly to achieve this goal. One of the

factors that have a high impact on the scheduling algorithm

design is the dependency of the tasks. Dependency implies

that the tasks are executed in some precedence order. This

survey provides a review of the various scheduling algorithms

in cloud mainly from the perspective of task dependency. The

broad categorization, advantages and the disadvantages of the

various scheduling algorithms available for both dependent

and independent tasks are discussed. Based on a

comprehensive understanding of the challenges and the

current research trends, some open issues worthy of further

exploration are proposed.

General Terms

Cloud computing, Task dependency, Independent tasks and

Dependent tasks.

Keywords

Resource scheduling, Scheduling algorithms, Hybrid cloud,

Task dependency, IaaS.

1. INTRODUCTION
The emergence of various technologies like virtualization,

service oriented computing and the availability internet

connection of higher bandwidth, has paved the way for the

evolution of the cloud computing technology.

Using the cloud computing technology, one can lease the

required computing resources, software or a development

platform from the cloud service provider and pay as per the

usage. This is similar to using the utility services like

electricity and paying the bills without worrying about the

technical aspects of electricity generation[1].

The three services delivery models of cloud are:

 Software as a Service (SaaS)

 Platform as a Service (PaaS)

 Infrastructure as a Service (IaaS)

In the SaaS model, the software or the applications are hosted

over the cloud and are made available to the customers based

on the pay-as-per-use model. The advantage of the SaaS is

that, the clients need not spent huge amount in buying the

software licenses. Google Apps and Salesforce [2] are

examples of this model. The PaaS model provides a hosting

environment for the client’s application. Examples for PaaS

model are Google App Engine [3] and Amazon Web Services.

The IaaS model lets the client to dynamically scale up or scale

down the resources like processing power, storage capacity,

network bandwidth etc. Example: Amazon EC2 [4],

Eucalyptus [5], etc.

Based on the scalability and pooling up of the resources, the

cloud computing is of three types namely:

 Private or Internal Cloud

 Public Cloud

 Hybrid Cloud

The private clouds enable pooling up of the resources owned

by the users and utilize them without any charge. Apart from

the resources in the private cloud, the public cloud service

providers enable the users to scale up or scale down the

resources usage according to the demand and charge them in a

per-use basis. The hybrid cloud is a combination of both the

Public and Private cloud. Thus, the demand for the resources

clearly indicates the need for the selection of efficient

scheduling algorithms that ensure the optimal utilization of

the resources available through all these three types of clouds.

One of the important factors that have a high impact on the

selection of the scheduling strategy is the task dependency.

Based on the dependency, the tasks may be classified as

independent or dependent tasks. The independent tasks have

no dependencies among the task and have no precedence

order to be followed during scheduling. In contrary, the

dependent tasks have task-precedence order to be met during

the scheduling process. Thus, the strategies or approaches

used for scheduling these types of tasks differ drastically and

has been studied widely. To throw light on the various

scheduling algorithms available in the literature for both the

independent and dependent tasks scheduling, the taxonomy of

scheduling algorithm based on the Task dependency is

discussed in this survey.

In the earlier works, Casavant et al [6] has proposed a

hierarchical taxonomy for scheduling algorithms in general-

purpose parallel and distributed computing systems. In [7]

Fangpeng et al has extended the taxonomy proposed by

Casavant et al for Grid computing environment. Since cloud

computing has evolved from grid computing, distributed

computing and parallel computing paradigms, the scheduling

algorithms taxonomy developed for these systems can also be

applied in cloud. However a detailed survey of the algorithms

based on task dependency for the cloud computing

environment is yet to be done and this survey tries to bridge

this gap and extends the taxonomy of scheduling algorithms

for grid proposed by Fangpeng et al in [7] to the cloud

computing environment based on the task dependency.

The remainder of this paper is organized as follows: An

overview of the process of scheduling of tasks in the cloud

computing environment is presented in Section 2 with a

generalized scheduling architecture. In Section 3, the

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 15, November 2013

21

taxonomy, design and analysis of scheduling algorithms based

on the task dependency for cloud computing environment is

discussed. The open issues in cloud computing for further

research are explored in section 4 and the conclusion is given

in Section 5.

2. OVERVIEW OF TASK SCHEDULING
In the cloud computing environment, a task is defined as an

atomic unit to be scheduled by the scheduler and assigned to a

resource. A job or a meta-task is a set of atomic tasks that is

considered for scheduling. The task scheduling is defined as

the mapping of tasks to a selected group of resources which

may be distributed in multiple administrative domains [7].

The resource required for the completion of the task may be a

processor for data processing, a data storage device, or a

network link for transporting data. The properties of a task are

parameters like CPU/memory requirement, deadline, priority,

etc. For example, in a hybrid cloud computing environment

the tasks are scheduled onto the resources available in both

the public and the private cloud.

2.1 Components of task scheduling in a

hybrid cloud

Fig 1: Components of task scheduling in a hybrid cloud

A hybrid cloud is a combination of both a private and a public

cloud. The Figure 1 given above describes various the

components of scheduling tasks in a hybrid cloud computing

environment. The advantage of a hybrid cloud is the

scalability of the resources. In a hybrid cloud computing

environment the resources already available, is pooled up as a

private cloud and extra resources required can be got from the

public cloud on demand. To schedule the tasks in a hybrid

cloud environment, the user submits the tasks to the scheduler

in the private cloud and requests the Virtual Machine (VM)

required for completing the task. The private cloud scheduler

schedules the tasks on to the available virtual machines in the

private cloud based on the scheduling strategy defined. If the

task could not be completed using the resources in the private

cloud then additional resources required are acquired from the

public cloud service provider. A redirection strategy is used to

redirect the tasks to the public cloud scheduler and the tasks

are scheduled onto virtual machines in the public cloud [8].

3. TAXONOMY OF SCHEDULING

ALGORITHMS
The Taxonomy of scheduling algorithms in the cloud

environment based on task dependency for both the

independent and dependent tasks is given in figure 2.

Fig 2: Taxonomy of scheduling algorithms in Cloud based

on Task dependency

Based on the task dependency, the tasks can be classified as

independent and dependent tasks. The tasks which do not

require any communication between the tasks are called

independent tasks. The dependent tasks differ from the

independent tasks as the former have precedence order to be

followed during the scheduling process. The main objective in

scheduling the dependent tasks is to minimize the make span

which is the total length of the schedule, by decreasing the

time taken to execute each node called the Computation cost

and the communication cost which is, the time taken to

transfer data between the two nodes. Thus, the tasks

dependency plays a vital role in deciding the appropriate

scheduling strategy.

3.1 Static vs. Dynamic scheduling

algorithms
As given in figure 2, the algorithms for task scheduling can be

broadly classified as static or dynamic based on the time at

which the scheduling or assignment decisions are made. In the

case of static scheduling, information regarding all the

resources in the cloud and the complete set of tasks as well as

all the independent sub tasks involved in a job is assumed to

be available by the time the task is scheduled on the cloud.

But in dynamic scheduling, a prior knowledge of the

resources needed by the task and the environment in which it

would be executed is unavailable as the jobs arrive in a real-

time mode.

The static scheduling algorithms are further classified as

heuristics based and guided random search based [9]

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 15, November 2013

22

algorithms. The heuristics based class of algorithms makes the

most realistic assumptions about a priori knowledge

concerning process and system loading characteristics. It can

be used in the scheduling problem which cannot give optimal

answers but only require the most reasonable amount of cost

and other system resources to perform their function. The

guided random search based algorithms make random choices

and guide them through the problem space. These algorithms

are also called as “nature’s heuristics” [10] as they have a

close resemblance to the phenomenon existing in nature.

Genetic algorithm is an example of this type, which searches

for a near-optimal solution in large solution spaces.

The dynamic scheduling algorithms can be used in two

fashions namely on-line mode and batch mode. In the online

mode, a task is scheduled onto a machine as soon as it arrives.

Each task is scheduled only once and the scheduling result

cannot be changed. Hence, on-line mode of dynamic

scheduling can be applied, if the arrival rate of the tasks in the

real-time is low. However, in the batch mode the tasks are

collected into a set that is examined for scheduling at

prescheduled times. While online mode heuristics consider a

task for scheduling only once, batch mode heuristics consider

a task for scheduling at each scheduling event until the task

begins execution. [26].

3.2 Scheduling independent tasks
The various static and dynamic algorithms commonly used in

scheduling the independent tasks are given in the figure 3 and

are discussed briefly below [13], [16], and [26].Independent

tasks may be further classified as coarsely grained and fine

grained tasks based on the granularity.

Fig: 3 Classification of Scheduling Algorithms for

independent tasks

Granularity is the ratio of computation to the amount of

communication. The Coarse-grained tasks communicate data

infrequently and only after larger amounts of computations.

The fine-grained tasks are small individual tasks in terms of

code size and execution time. They have greater potential for

parallelism but also greater overheads of processing and

communication time.

In [11] Muthuvelu et al and [12] liu et al have proposed

scheduling algorithms for grouping fine grained tasks and

Scheduling them on to the grid.

3.2.1 Static algorithms for independent tasks

The static algorithms used for scheduling the independent

tasks can be broadly classified as Heuristic based and Random

search based algorithms. The various heuristic based

algorithms are discussed briefly in the following section.

3.2.1.1 Static - heuristic based algorithms

Braun et al have done a detailed comparative study of various

static scheduling algorithms for scheduling independent tasks.

Some of the popular algorithms are OLB, MET, MCT, Max-

Min etc.

Opportunistic Load Balancing (OLB)

The OLB scheduling algorithm [13] tries to keep all the

machines or resources available as busy as possible. Thus it

assigns each task to the next immediately available machine

in a random order. The tasks are assigned randomly

irrespective of the expected execution time on that machine.

The advantage of OLB that it is simple and easy to implement

as it does not require any extra calculation. The disadvantage

in OLB is that the mappings it finds can result in very poor

make span as OLB does not consider expected task execution

times, when assigning the tasks to the resources.

Minimum Execution Time (MET)

In contrast to OLB, the main objective of the Minimum

Execution Time (MET) is to give each task to its best

machine. Thus MET assigns each task, in arbitrary order, to

the machine with the best expected execution time for that

task, regardless of that machine's availability [13], [14].

Though MET is also very simple to implement, it can cause a

severe load imbalance across machines as it ignores the

availability of machines during the scheduling process.

Minimum Completion Time (MCT)

The motivation behind MCT is to combine the benefits of

both OLB and MET and to avoid the circumstances in which

OLB and MET perform poorly. The Minimum Completion

Time algorithm schedules each task, in arbitrary order to the

machine with the minimum completion time for that task [13].

But the limitation of this approach is that all the tasks cannot

be assigned to the machines that have the minimum execution

time for them.

The min-min heuristic

In the Min-min heuristic, the minimum completion time C for

each task to be scheduled is calculated and the task with the

overall minimum completion time is selected and assigned to

the corresponding machine. Hence the algorithm is given the

name Min-min. The scheduled task is removed from the set of

tasks to be scheduled, and the process is repeated until all

tasks are scheduled[14], [15].

Similar to MCT the Min-min algorithm is based on the

minimum completion time. However, MCT considers only

one task at a time but the Min-min considers all the

unscheduled tasks for each decision making step. The

advantage of Min-min is that it assigns the tasks in the order

that changes the machine availability status by the least

amount that any assignment could. Thus more tasks can be

assigned to the machines that complete them the earliest and

also execute them the fastest.

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 15, November 2013

23

The max-min heuristic

In Max-min, the task with the longer execution time is

assigned to the best machine available first and is executed

concurrently with the remaining tasks with shorter execution

times. This helps to minimize the penalties incurred from

performing tasks with longer execution times at last.

The Max-min heuristic approach gives a more balanced load

across machines and a better make span than the Min-min.

Because in Min-min all of the shorter tasks would execute

first, and then the longer running task would be executed

while several machines sit idle. Thus the Max-min performs

better than the Min-min heuristic if the number of shorter

tasks is larger than that of longer tasks.

Min-min and Max-min algorithms are simple and can be

easily amended to adapt to different scenarios. QoS Guided

Min-min heuristic [17], Segmented Min-min algorithm [18]

are modifications of the existing min-min algorithm.

Xsuffrage

The idea behind Suffrage [19] approach is, the task that would

suffer the most, if it is not assigned to a machine should be

given the first priority than the other tasks. The suffrage value

of each task is defined as the difference between its best MCT

and its second-best MCT. Conventional suffrage algorithms

may have problems when the resources are clustered. An

improved approach called XSuffrage [20] by Casanova et al,

gives a cluster level suffrage value to each task and

experiments show it outperforms the conventional Suffrage

approach.

Backfilling algorithms

Backfilling is a policy of strategically allowing tasks to run

out of order to reduce fragmentation or idle holes. The most

popular backfilling strategies are the Conservative,

Aggressive and Selective backfilling strategies. In

conservative backfilling [21], jobs are given reservation as

and when they arrive. Hence, if the jobs are longer, it is very

difficult for other jobs to get a reservation ahead of previously

arrived jobs. With Aggressive Backfilling [22], only the

request at the head of the waiting queue called the pivot is

granted a reservation and other requests are allowed to move

ahead in the queue if they do not delay the pivot. Under

selective backfilling [23] a request is granted a reservation if

its expected slowdown exceeds a threshold. In [8] Assuncao et

al have evaluated seven strategy sets including the backfilling

algorithms to Evaluate the Cost-Benefit of Using Cloud

Computing to Extend the Capacity of Clusters.

3.2.1.2 Static - random search based algorithms

for independent task

Genetic Algorithm

GA is an evolutionary technique to perform search in a large

solution space. In GA the various steps like population

selection, seeding, crossover, and mutation are carried out for

mapping the tasks on to the machines. While the advantages

of the GAs are the generation of the good quality of output

schedules, the disadvantages are: The scheduling times are

usually much higher than the heuristic- based techniques.

Also, the optimal set of control parameters obtained for one

set of task scheduling may not be optimal for another set of

tasks [24].

Simulate Annealing (SA)
SA is a search technique based on the physical process of

annealing, which is the thermal process of obtaining low-

energy crystalline states of a solid. SA theory states that if

temperature is lowered sufficiently slowly, the solid will reach

thermal equilibrium, which is an optimal state. By analogy,

the thermal equilibrium is an optimal task-machine mapping

(optimization goal), the temperature is the total completion

time of a mapping (cost function), and the change of

temperature is the process of mapping change. If the next

temperature is higher, which means a worse mapping, the next

state is accepted with certain probability [25].

Tabu Search (TS)

Tabu Search is a meta-strategy for guiding known heuristics

to overcome local optimality. It is an iterative technique

which explores a set of problem solutions, denoted by X, by

repeatedly making moves from one solution to another

solution s’ located in the neighborhood N(s) of s. These

moves are performed with the aim of efficiently reaching an

optimal solution by minimizing some objective functions [13].

GSA

The Genetic Simulated Annealing (GSA) [25] heuristic is a

combination of the GA and SA techniques. In general, GSA

follows procedures similar to the GA. However, for the

selection process, GSA uses the SA cooling schedule and

system temperature and a simplified SA decision process for

accepting or rejecting a new chromosome.

A*

A* is a tree based search heuristic beginning at a root node

that is a null solution. As the tree grows, nodes represent

partial scheduling (a subset of tasks is assigned to machines),

and leaves represent final scheduling (all tasks are assigned to

machines). The partial solution of a child node has one more

task scheduled than the parent node. Each parent node can be

replaced by its children. To keep execution time of the

heuristic tractable, there is a pruning process to limit the

maximum number of active nodes in the tree at any one time.

If the tree is not pruned, this method is equivalent to an

exhaustive search. This process continues until a leaf

(complete scheduling) is reached.

3.2.1.3 Dynamic algorithms for independent tasks

Online mode

 The OLB, MET, MCT algorithms discussed in the previous

section can also be used to schedule independent tasks

dynamically in the online mode [7],[26]. The other algorithms

include Switching Algorithm and the k-percent best (KPB).

SA (Switching Algorithm)

SA (Switching Algorithm) uses the MCT and MET heuristics

in a cyclic fashion depending on the load distribution across

the machines. MET can choose the best machine for tasks but

might assign too many tasks to same machines, while MCT

can balance the load, but might not assign tasks machines that

have their minimum executing time. If the tasks are arriving

in a random mix, it is possible to use the MET at the expense

of load balance up to a given threshold and then use the MCT

to smooth the load across the machines.

K-Percent Best (KPB)

KPB (K-Percent Best) heuristic considers only a subset of

machines while scheduling a task. The subset is formed by

picking the k best machines based on the execution times for

the task. A good value of k schedules a task to a machine only

within a subset formed from computationally superior

machines. The purpose is to avoid putting the current task

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 15, November 2013

24

onto a machine which might be more suitable for some yet-to-

arrive tasks, so it leads to a shorter make span as compared to

the MCT.

Batch mode

The various scheduling algorithms discussed earlier for

scheduling the independent tasks statically can also be used to

schedule tasks dynamically in the batch mode. Examples of

this type of algorithms include the Min-min heuristic, Max-

min heuristic, Suffrage heuristic, etc.

3.3 Scheduling algorithms for dependent

tasks
The Classification of the various Scheduling Algorithms for

Dependent tasks is given in the figure 4. The static and the

dynamic scheduling algorithms widely used for scheduling

dependent tasks [9] are discussed briefly in the following

section.

Fig: 4 Classification of Scheduling Algorithms for

dependent tasks.

3.3.1 Static algorithms for dependent tasks

The static algorithm for independent coarsely grained tasks

are classified into two types namely the heuristic-based and

the guided random-search-based algorithms. The heuristic-

based algorithms can be further classified into three types as

list scheduling heuristics, Clustering heuristics, and task

duplication heuristics. In [27], Topcuoglu et al has discussed

briefly about all the static algorithms for dependent tasks

mention below.

List scheduling heuristics
In the list scheduling heuristics, as the name suggests, all the

tasks of the given graph are listed according to the priorities

and an ordered list of tasks is constructed. Then the tasks are

selected in the order of their priorities and scheduled to a

processor which minimizes a predefined cost function. The

advantages of the list scheduling heuristics is that they are

generally more practical, provide good quality of schedules

and also provide better performance results at a lower

scheduling time than the other categories.

The Modified Critical Path (MCP), Dynamic level Scheduling

(DLS), Mapping Heuristic (MH), Levelized - Min Time

(LMT), The Heterogeneous-Earliest-Finish-Time (HEFT) and

the Critical-Path-on-a-Processor (CPOP) algorithms are some

of the examples of the list scheduling heuristics [9].

Clustering heuristics

Clustering algorithms are generally applied for unbounded

number of processors. In this, the algorithm maps the tasks in

a given graph to an unlimited number of clusters. The task

selected for clustering can be ready task or any task. The

previous clustering is refined at every iteration step by

merging some clusters. If two tasks are assigned to the same

cluster, they will be executed on the same processor. Since

clustering algorithms are generally applied for unbounded

number of processors, a cluster merging step is required in the

second phase to merge the task clusters generated by the

algorithm onto a bounded number of processors and a task

ordering step is required to order the task executions within

each processor. Examples of this type of algorithms are:

Dominant Sequence Clustering (DSC), Linear Clustering

method, Mobility Directed and Clustering and Scheduling

system (CASS).

Task duplication heuristics

The idea behind the Task duplication algorithms is to reduce

the inter process communication overhead by mapping the

tasks redundantly. Duplication – based algorithms differ

according to the selection strategy of the tasks for duplication.

However, the task duplication based heuristics are not

practical because of their significantly high time complexity

than other categories of algorithms. Examples of this group of

algorithms include: Critical Path Fast Duplication,

Duplication Scheduling Heuristic, Bottom-Up Top-Down

Duplication Heuristic, Duplication First and Reduction Next.

3.3.2 Dynamic algorithms for dependent tasks
3.3.2.1 Online mode algorithms

The online mode scheduling algorithms for scheduling the

dependent tasks dynamically are discussed briefly in the

following section.

Deadline-Markov Decision Process (MDP)

The deadline-driven cost-minimization algorithm [28], or the

Deadline-Markov Decision Process (MDP), breaks the DAG

into partitions, assigning a maximum finishing time for each

partition according to the deadline set by the user. Based on

this time, each partition is scheduled for that resource which

will result in the lowest cost and earliest estimated finishing

time. This algorithm works with on-demand resource

reservation.

Partial Critical Paths (PCP)

Abrishami et al. [29] presented the Partial Critical Paths

(PCP) algorithm which schedules the workflow in a

backwards fashion. Constraints are added to the scheduling

process when such scheduling of jobs in a partial critical path

fails, so that the algorithm will be re-started. This algorithm

presents the same characteristics as does MDP, although it

involves greater time complexity, since a relatively large

number of re-scheduling can be demanded during the

execution of the algorithm.

Particle Swarm Optimization (PSO)

The self-adaptive global search optimization technique called

particle swarm optimization (PSO) is utilized to schedule

workflows in the algorithm proposed in [30] and which was

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 15, November 2013

25

developed to work in clouds with a single-level SLAs and on-

demand resource leasing. It considers neither multi-core

resources nor workflow deadlines, but focuses solely on

monetary cost minimization.

Hybrid Cloud Optimized Cost (HCOC)

The Hybrid Cloud Optimized Cost (HCOC) algorithm [31],

schedules workflows in hybrid clouds by first attempting

costless local scheduling using HEFT[9]. If the local

scheduling cannot meet the deadline, the algorithm selects

jobs for scheduling in resources from the public cloud. As

with MDP algorithm, the objective is to minimize the

financial cost obeying the deadlines stipulate by the user in a

single-level SLA contract.

3.3.2.2 Traditional algorithms modified for

dynamism of cloud
Considering the dynamism of cloud, In [32], the authors

propose a pM-S algorithms which extends a traditional

dynamic Master-Slave scheduling model. In [33], a derived

algorithm based on the Dynamic Level Scheduling (DLS) is

proposed. In the original DLS, the dynamic level of a task in a

DAG is used to adapt to the heterogeneity in resources, while

in the newly proposed algorithm, the dynamic length of the

queue on each resource is also taken into account for

computing a task’s level. To estimate the length of the queue,

it is assumed that jobs are coming following a Poisson

distribution.

4. OPEN ISSUES
The impact of communication networks and the capacities of

the communication links connecting the available resources

on the scheduling decisions needs to be explored further. In a

hybrid cloud computing environment, the open issues for

further research are the splitting of a workflow of dependent

tasks to be executed in private and public cloud, deciding on

whether task should be executed on private cloud or public

cloud etc. Another challenging issue in hybrid clouds is how

interfaces can be provided to interact automatically with

different existing public clouds, so that the broker can gather

information about resources and the workflow executed and

monitored in a variety of public cloud infrastructures.

5. CONCLUSION
Although task scheduling strategies used in parallel and

distributed systems form the base for the cloud computing, the

dynamism and heterogeneity of the cloud computing

environment poses various new challenges and makes task

scheduling an interesting topic for research. In this literature

review, the broad classification, advantages and disadvantages

of the various current scheduling algorithms working in the

cloud computing scenario based on the task dependency are

discussed. The task scheduling problem in Cloud computing

and the other open issues are also discussed briefly. Thus it

could be concluded that the heterogeneity, dynamism,

computation, data separation, cost reduction, and providing

the Quality of Service (QoS) are the primary challenges

concerned in the cloud computing environment.

6. REFERENCES
[1] M. Armbrust et al., Above the Clouds: A Berkeley View

of Cloud Computing, tech. report UCB/EECS-2009-

28, EECS Dept., Univ. of California, Berkeley, Feb.

2009.

[2] Salesforce.com

[3] Google App Engine: http://www.google.com/apps

[4] Amazon EC2: http://aws.amazon.com/ec2

[5] Eucalyptus http://eucalyptus.com

[6] T. Casavant, and J. Kuhl, A Taxonomy of Scheduling

in General-purpose Distributed Computing Systems, in

IEEE Trans. on Software Engineering Vol. 14, No.2,

pp.141--154, February 1988.

[7] F. Dong and S. G. Akl, Scheduling algorithm for grid

computing: state of the art and open problems,

Technical Report of the Open Issues in Grid Scheduling

Workshop, School of Computing, University Kingston,

Ontario, January, 2006.

[8] M. Dias de Assunção, A. di Costanzo, and R. Buyya,

“Evaluating the Cost-Benefit of Using Cloud

Computing to Extend the Capacity of Clusters,” Proc.

Int’l Symp.

[9] Haluk Topcuoglo, Salim Hariri, Min-You Wu,

Performance-effective and low-complexity task

scheduling for heterogeneous computing, IEEE

Transactions on parallel and distributed systems, No.3,

March 2002.

[10] A. Abraham, R. Buyya and B. Nath, Nature's Heuristics

for Scheduling Jobs on Computational Grids, in Proc.

of 8th IEEE International Conference on Advanced

Computing and Communications (ADCOM 2000), pp.

45-52, Cochin, India, December 2000.

[11] N. Muthuvelu, J. Liu, N. L. Soe, S.rVenugopal, A.

Sulistio and R. Buyya, A Dynamic Job Grouping-Based

Scheduling for Deploying Applications with Fine-

Grained Tasks on Global Grids, Proceedings of the 3rd

Australasian Workshop on Grid Computing and e-

Research (AusGrid 2005), Newcastle, Australia,

January 30 – February 4, 2005.

[12] Quan Liu, Yeqing Liao, “Grouping based Fine-Grained

job Scheduling in Grid Computing”, First International

Workshop on Education Technology and Computer

Science, Vol.1,pp. 556-559, IEEE, 2009.

[13] R. Braun, H. Siegel, N. Beck, L. Boloni, M.

Maheswaran, A. Reuther, J. Robertson,M. Theys, B.

Yao, D. Hensgen and R. Freund, A Comparison of

Eleven Static Heuristics for Mapping a Class of

Independent Tasks onto Heterogeneous Distributed

Computing Systems, in J. of Parallel and Distributed

Computing, vol.61, No. 6, pp. 810-837, 2001.

[14] R.Armstrong, D.Hensgen, and T.Kidd, “The relative

performance of various mapping algorithms is

independent of sizable variance in run-time

predictions,” 7th IEEE Heterogeneous Computing

Workshop (HCW’98), March. 1998, pp.79 87

[15] R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbell,

M. Halderman, D.Hensgen, E. Keith, T. Kidd, M.

Kussow, J. D. Lima, F. Mirabile, L. Moore,B. Rust, and

H. J. Siegel, "Scheduling resources in multi-user,

heterogeneous,computing environments with

SmartNet," 7th IEEE HeterogeneousComputing

Ubrkshop (HCW '98), Mar. 1998, pp. 184-199.

[16] 0. H. Sbarra and C. E. Kim, "Heuristic algorithms for

scheduling independent tasks on nonidentical

processors," Journal of the ACM, Vol. 24, No. 2, Apr.

1977, pp. 280-259.

http://www.google.com/apps
http://aws.amazon.com/ec2

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 15, November 2013

26

[17] X. He, X. Sun and G. Laszewski, A QoS Guided

Min-Min Heuristic for Grid Task Scheduling, in J. of

Computer Science and Technology, Special Issue on

Grid Computing, Vol.18, No.4, pp.442--451, July 2003.

[18] M. Wu, W. Shu and H. Zhang, Segmented Min-Min: A

Static Mapping Algorithm for Meta-Tasks on

Heterogeneous Computing Systems, in Proc. of the 9th

Heterogeneous Computing Workshop (HCW'00), pp.

375--385, Cancun, Mexico, May 2000.

[19] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen and

R. F. Freund, Dynamic Matching and Scheduling of a

Class of Independent Tasks onto Heterogeneous

Computing Systems, in J. of Parallel and Distributed

Computing, Vol. 59, No. 2,pp.107--131, November

1999.

[20] H. Casanova, A. Legrand, D. Zagorodnov and F.

Berman, Heuristics for Scheduling Parameter Sweep

Applications in Grid Environments, in Proc. of the 9th

Heterogeneous Computing Workshop (HCW'00), pp.

349-363, Cancun, Mexico, May 2000.

[21] Mu’alem, A.W., Feitelson, D.G.: Utilization,

predictability, workloads, and user runtime estimates in

scheduling the IBM SP2 with backfilling. IEEE Trans.

Parallel Distrib. Syst. 12(6), 529–543 (2001)

[22] Lifka, D.A.: The ANL/IBM SP scheduling system. In:

Workshop on Job Scheduling Strategies for Parallel

Processing (IPPS’95), London, UK, 1995, pp. 295–303.

Springer, Berlin (1995)

[23] Srinivasan, S., Kettimuthu, R., Subramani, V.,

Sadayappan, P.: Selective Reservation strategies for

backfill job scheduling. In: 8th International Workshop

on Job Scheduling Strategies for Parallel Processing

(JSSPP ’02), London, UK, 2002. LNCS, vol. 2537,

pp.55–71. Springer, Berlin/Heidelberg (2002)

[24] S. Song, Y. Kwok, and K. Hwang, Security-Driven

Heuristics and A Fast Genetic Algorithm for Trusted

Grid Job Scheduling, in Proc. of 19th IEEE

International Parallel and Distributed Processing

Symposium (IPDPS'05), pp.65-74, Denver, Colorado

USA, April 2005.

[25] Y. Liu, Survey on Grid Scheduling (for Ph.D

Qualifying Exam), Department of Computer Science,

University of Iowa, http://www.cs.uiowa.edu/~yanliu/,

April 2004.

[26] M. M. Shoukat, M. Maheswaran, S. Ali, H. J. Siegel,

D. Hensgen, and R. F. Freund. “Dynamic mapping of a

class of independent tasks onto heterogeneous

computing systems”. Journal of Parallel and Distributed

Computing, 59:107–131, 1999.

[27] Haluk Topcuoglo, Salim Hariri, Min-You Wu,

Performance-effective and low-complexity task

scheduling for heterogeneous computing, IEEE

Transactions on parallel and distributed systems, No.3,

March 2002.

[28] J. Yu, R. Buyya, and C. K. Tham, “Cost-based

scheduling of scientific workflow applications on utility

grids,” in International Conference on e-Science and

Grid Computing, Jul. 2005, pp. 140–147.

[29] S. Abrishami, M. Naghibzadeh, and D. Epema, “Cost-

driven scheduling of grid workflows using partial

critical paths,” in 11th IEEE/ACM International

Conference on Grid Computing (GRID), Oct. 2010, pp.

81 –88.

[30] S. Pandey, L. Wu, S. Guru, and R. Buyya, “A particle

swarm optimization-based heuristic for scheduling

workflow applications in cloud Computing

environments,” in 24th IEEE International Conference

on Advanced Information Networking and Applications

(AINA), Apr. 2010, pp. 400 –407.

[31] L. F. Bittencourt and E. R. M. Madeira, “HCOC: a cost

optimization algorithm for workflow scheduling in

hybrid clouds,” Journal of Internet Services and

Applications, vol. 2, no. 3, Dec 2011, pp. 207–227.

[32] Tianchi Ma and Rajkumar Buyya, Critical-Path and

Priority based Algorithms for Scheduling Workflows

with Parameter Sweep Tasks on Global Grids, in Proc.

of the 17th International Symposium on Computer

Architecture and High Performance Computing, Rio de

Janeiro, Brazil, October 2005.

[33] M. Iverson and F. Ozguner, Dynamic, Competitive

Scheduling of Multiple DAGs in a Distributed

Heterogeneous Environment, in Proc. of Seventh

Heterogeneous Computing Workshop, pp. 70-78,

Orlando, Florida USA, March 1998.

IJCATM: www.ijcaonline.org

